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ABSTRACT 

This report presents results of a research effort to solve certain 

approximation problems that arise in the computation of linear stationary 

models of dynamical systems from given input-output data. 

B.L. Ho's existence theorem states necessary and sufficient conditions 

for strict realizability that are satisfied only in ideal situations. 

Mathematical proof is given in this report that good dynamical simulation 

is possible with linear models which represent partial, rather than minimal, 

realizations. The restrictions of B.L. Ho's theorem do not apply to 

partial realizations, and the class of partially realizable input-output 

descriptions is large enough for practical purposes. For any normal 

sequence of scalar Markov parameters, the transfer function of each partial 

realization is shown to lie on the diagonal of the E-array corresponding 

to the given sequence. The proof is based on the classical theory of the 

~ade'a~~roximation. Relevant parts of this theory are reviewed and 

developed in the report, including a new, stronger form of padel's 

representation theorem. 

As a by-product of this research, a sharpened, computationally more 

efficient version of B.L. Ho's minimal realization algorithm was derived. The 

new algorithm expresses every minimal realization of a given sequence of 

Markov parameters in terms of the pseudo-inverse matrices ($, wt). 
The generating matrices (v, W) are familiar from the theory of complete 

controllability and observability. The algorithm is shown to be the 

sharpest possible, subject to the requirement that every minimal 

realization be obtainable. 
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The problems considered in this report were inspired by certain 

questions raised by Dr. Bin-Lun Ho in his dissertation "on Effective 

Constmction of Realizations from Input-Output Descriptions" [6]. 

The object is to transform given input-output data of a multi- 

variate process into another description more suitable for simulation. 

In the case of stationary linear dynamical systems, which are the class 

studied by B.L. Ho, a useful description may take the form of state- 

variable differential (or difference) equations. From a practical 

point of view, the derived description (called the "model") should 

meet the following criteria: 

a. The model should reproduce the observed external behavior 

patterns of the dynamical system with acceptable accuracy. 

b, The construction of the model from the given input-output 

data should be economically carried out on a computer, using available 

or readily programmed routines. 

c. The model itself should be amenable to economical simulation 

on a computer. 

mese three criteria determine the quality, price, and operating cost 

of the model. 

B. L. Ho's methods meet the above requirements at least as well 

as the known methods of other researchers. In fact, B. L. Ho's models 



are called "realizations I' precisely because they perfectly match given 

input-output data. Furthermore, in the sense used by B. L. Ho, a 

realization is a finite set of first-order linear differential equations 

(expressed in terms of the coefficient matrices), and programming of a 

realization for simulation therefore presents no special difficulty. 

Suppose a given input-output sequence does not meet B. L. HO'S 

realizability conditions for a finite-dimensional model. Then two 

questions arise quite naturally: 

(1) Does B. L. Ho Is method give a model whose external behavior 

has approximating properties that make the model useful in simulating 

studies ? 

( 2 )  Can B. L. Ho's method be modified to further improve the 

approximating properties found in (1) ? 

at answering these two questions. 

Chapter I1 of the report reviews basic theorems in classical 

/ 

Pade approximation theory, i.e., the rational approximation of func- 

tions represented by power series, in a neighborhood of the origin 

of the argument. To prepare for application of the theory to the 

problem posed by question (1) above, a new and stronger form of ~adk's 

representation theorem is presented    he or em 2.5). In this chapter, 

we also draw attention to some pitfalls which must be avoided when 

generalizing results from normal to non-normal pad& tables. Examples 

to illustrate this point are discussed. Anticipating later applications 



t o  the  theory of l i n e a r  dgrllamical s y s t m s ,  t h e  chapter concludes with 

the d e f i n i t i o n  of t h e  E-array and i t s  r e l a t i o n  t o  the  Pad6 t a b l e .  

Chapter 911 concentrates on de temfnan ta l  elcpressfons which play 

a  prominent pas t  i n  the  Pad& theory ,  Such expressions have long been 

known f o r  n a m l  Pad6 t a b l e s ,  but  Theorem 3.79 giving the  determinantal 

representa t ion  of the  Padk approximnant f o r  the  general case,  does not  

appear t o  have been s t a t e d  o r  proved i n  the  ava i l ab le  l i t e r a t u r e .  A 

corol lary  o r  the  theorem, r e s t r i c t e d  t o  t,he n o m l  case, ind ica tes  a  

s imi la r  representa t ion  f o r  the  element8 of the  E-array. 

Chapter 337 s t a t e s  two r e s d t s  of B. E. ~ o ' 8  work which a r e  p e r t i -  

nent  t o  t h e  present  r eamrch ,  namely t h e  existence theorem (proposi t ion 

4.1)  a ~ d  t h e  algsritkrw f o r  minim1 r e a l i z a t i o n s  (Theorem 4 .4 ) .  By 

a p p e d i n g  t o  the  unique proper t ies  of the  pseudo inverse,  we a r e  a b l e  

t o  sharpen B* L. Ho 's algori thm i n  Tkeorem 4.9. Corollary 4.10 p resen t s  

the  unique rec iprocal  r e l a t i o n s  between any minimal r e a l i z a t i o n  (F, G ,  H )  

and tbe  matrices (v, w). 

Chapter V, l i k e  Chapter 111, deals  pr imar i ly  with d e t e m i n a n t a l  

r e l a t ionsh ips ,  but r e s t r i c t e d  t o  r ea l i zab le  sequences, l e e . ,  t o  sequences 

corresponding t o  r a t i o n a l  funct ions .  A s  a  by-product, Corollary 5 . 5  

genera l izes  one of B. $. ~ o ' s  theorems. Theorem 5.8 gives four mathe- 

m t i c a l  equivalents  of the  statement t h a t  a  s c a l a r  sequence has a  mini- 

mal r e a l i z a t i o n .  

In  mapQer VI, we general ize the  concept of t h e  r e a l i z a t i o n  of 

a  sequence by considering p a r t i a l  r e a l i z a t i o n s  and the  associa ted  



approximation problems. Theorem 6.5 proves t h a t  t h e  p a r t i a l  r e a l i z a t i o n  

of a  normal sequence Y ( i . e  ., one f o r  which A:') # 0, a l l  p o s i t i v e  

in t ege r s  r )  is  c lose ly  r e l a t e d  t o  t h e  pad6 approximants f o r  t h e  power 

k  s e r i e s  C y  z . Coroll-ary 6.6 i d e n t i f i e s  the  t r a n s f e r  funct ion ,  of 
k 

t h e  p a r t i a l  r e a l i z a t i o n  f o r  normal y ,  with elements i n  the  E-array 

f o r  t h e  power s e r i e s .  

Chapter V I I  serves a s  a  review of t h e  r e s u l t s  obtained. The 

l i m i t a t i o n s  of t h e  work poin t  t o  t h e  need f o r  f u r t h e r  research,  a s  

indica ted  a t  t h e  end of t h a t  chapter .  

Two appendices a r e  included. The f i r s t  one summarizes a  few 

d e f i n i t i o n s  from a lgebra  t h a t  a r e  pe r t inen t  t o  Chapter 11. The 

second appendix b r i e f l y  s t a t e s  d e f i n i t i o n s  and p roper t i e s  of the  

pseudo inverse of a  matr ix.  These a r e  used i n  Chapter I V .  



As pointed out in the Introduction, this chapter is concerned primarily 

with properties of the classics% hdd approximation. 

After the definition of standard terms, we prove a lemma which will 

later allow us to sharpen certain classical results. 

Following the leama, we consider the classical questions of existence 

(Theorem 2.2) and uniqueness  h he or em 2.3) of the entries in the pad6 table 

for a given power series. The existence of Theorem 2.2 is proven by a 

constructive approach designed to pave the way for Theorem 2.5. 

Theora 2.5 has not been found in the published literature on the 

tion. It is a stronger form of the classical representation 

theorem (meorem 2.4). Its formulation will be used in subsequent sections 

to link together the classical theory of the t add approximation and the 

meorem 2.6 gives precise meaning to the notion that the pad6 

approxiaxant is, in some sense, a "best" rational approximation to a given 

power series. The proof of the theorem is followed by a short discussion 

of its significance. 

The possible existence of square blocks of equal approximants gives 

rise to the distinction between normal and other pad4 tables. This 

important subject is introduced in Theorem 2.7 and its two corollaries. 

The last section of the chapter deals with the E-array associated 

with a, n o m l  Pad: table. 



2.1 Definit ions.  [ l 7 ,  p. 3781 

1. Let 
00 

f ( z )  = Z akz k 
k=O 

be a formal power s e r i e s  i n  one variable, with r e a l  coefficients.." 

Let (i, j )  be an ordered pa i r  of nonnegative integers.  

The (i, j) f o r  f i s  a ra t iona l  function 

with the  two proper t ies  (ca l led  the  defining conditions of the  approximant) : 

deg Nij 5 j; 

and 11. f ( z ) ~ .  . ( z )  - N. . (z)  = ( a i+ j+ l )  
1 J  1 J  

k where (zk) denotes a power se r ies  beginning with the  term a or  a 

higher power of z.* 

2. The pad& tab le  f o r  f i s  t he  (doubly) i n f i n i t e  matrix 

~ ( f )  = [R. . I ,  i = 0, 1, ...; j = 0, 1, ...; of pad: approximants fo r  f .  
1 J  

3. The (i, j )  pad; approximant f o r  f i s  ca l l ed  normal i f  the  

quotient 
Ri j 

i s  d i s t i n c t  from a l l  other quotients i n  t he  table .  

A formal power s e r i e s  f i s  normal i f  a l l  of the  pad& approximants 

f o r  f a r e  normal, i. e. d i s t i n c t ,  The pad:! t ab le  f o r  f i s  then a l so  

ca l led  normal, and so i s  the sequence of coeff ic ients  (ao, al, . . . ) .  

-------------- 
* For def in i t ion  and b r i e f  discussion of t he  propert ies of formal power series,  

a s  well  a s  other terminology and def ini t ions  from algebra, see Appendix A. 

** I n  particillax, we may have (zk) = O e  



Hy-potheses: 

k 
1. A : k = 0 1 . . . i i s  a s e t  of vec tors  i n  the  r e a l  

i 
Euclidean vector  space R , i - > 1. 

k 
2. The vectors  A ( = 0 1, . i) span an r-dimensional 

i subspace of R . 
Am+l i 3. m i s  t h e  l a r g e s t  index. such t h a t  t h e  vec tors  A ~ ,  ..., A 

a r e  l i n e a r l y  dependent. 



Conclusions : 

2. The l i n e a r  homogeneous equation 

has a unique solution d o  d l  . . . , d )  such t h a t  

Proof: 

1. By hypothesis 2, r(6 i) of the given vectors are  l i n e a r l y  

independent, but any col lect ion of r + 1 vectors from the  given s e t  a re  

k l i nea r ly  dependent. I n  par t icular ,  t he  vectors A (k  = i - r j  i - r + 1, . . ., i) 

are  l i nea r ly  dependent. Hy-pothesis 3 then implies 

2 a .Am f 0. 

The defining property of m now implies 

(i) m < i. 

k 
(ii) The vectors A ( k  = m + 1, m + 2, . . ., i )  a r e  a l l  nonzero 

and l i nea r ly  independent. 

(iii) l i e s  i n  the  (i - m) -dimensional subspace spanned by 

k the  vectors A (k  = m + l9 ., i). 



Therefore, the  equation 

has a  unique solut ion ( dm+a., dm*, a - * 9 di) 

Existence of t he  solut ion follows from (iii) above, 

To prove uniqueness, suppose d l  d!) I were a  second 

solution of (2.8).  Then 

and (ii) above implies 

d k =  % (k  = m + l j  ..., i ) .  

The solut ion of (2.8), together with the values of %(k - < m) given 

b 

Then 

o (k  < i )  

4, = 
a. (k  = i )  

i s  a  solution of (2.6) sa t is fying (2.7)9 and c l ea r ly  it i s  the  only solution 

sa t is fying (2.7).  

A ~ = O ,  m < i .  

men, from the def in i t ion  of m, we must have 

and these vectors a re  l i nea r ly  independent. 



Now subst i tu te  t he  values of % given by (2.7) i n to  equation (2.6).  

Then 

i i 
0 = C = C since = 0. 

k=m+l k=Wl 

By l i nea r  independence, we get t he  unique r e su l t  

i 
d - 0  ( k = m + - 1 ,  mi- 2, ..., i). 

k=Wl k 

Theref ore 

uniquely s a t i s f i e s  both (2.6) and (2.7). 

Theorem 2.2 ( ~ x i s t e n c e    he or em) (pad&) [ l l ,  p. 91 
00 

Conclusion: For each ordered pa i r  (i, j) of nonnegative integers, 

there  exis%s a r a t i ona l  function R.  . ( f ,  z )  sat is fying the  conditions I 
1 J  

and I1 of the  (i, 3) pad; approximant. 

i k  
Proof: Let ~ ( z )  = B %z 

k=O 

be a polynomial with undetermined coeff ic ients  (do, . . . , di) . Form the 

product 

where 



The undetermined coefficients $ are chosen as follows: 

(i) If i = 0, take do = 1. 

(ii) If i > 0, we set 

Written out, (2.15) is a system of i linear homogeneous equations 

in the i + 1 unknowns do> dl, . . ., di, and thus always has a non- 

trivial solution. In matrix form, the system (2.15) is 

or, equivalently, 
i , ,ilk = 0 
k=O 

where 

Let r be the rank of the [a] matrix in equation (2.16). Then 

the vectors A (k = 0 1 . . i) and the integer r satisfy the 

hypotheses of Lemma 2.1. Let m 0 be the index defined in t h e  lemma,. 



By the conclusions of the  lemma, (2.17) has a (unique) nontr iv ia l  solution 

( d d l  . ) such t ha t  

Subst i tu t ion i n  (2.11) gives 

The product fD i s  therefore a power s e r i e s  of the  form 

where 

From (2.18) and (2.19): 

deg D 5 i, D j/. 0, and deg N 5 j. 

Thus D and N s a t i s f y  the  defining conditions I and I1 of the  

(i, j) ligadL approximant fo r  f .  

Theorem 2.3 (uniqueness   he or em) [ l7 ,  p. 3781 
m 

k 
Hypothesis: 1. f ( z )  = .Z agz . 

0 

2 (i, j )  i s  an ordered pa i r  of nonnegative integers.  

3. Each of the two p a i r s  of polynominals (N, D) and 

( N ' ,  D ' )  s a t i s f i e s  t he  conditions I and I1 of the  

(i, j) pad& approximant f o r  f .  

Conclusion: 



Proof: By hypothesis, 

i +  34-1 )d fDD1 = [ N  + ( Z  
i+ j+l (i) fD - N = ( z  ) I D ' ;  and 

(ii) f ~ q  - N *  = (zi+J+l) fDsD = [N' + ( 2  i+ j + l  ) I D *  

Theref ore 

the  l e f t  s ide  of (2.20) contains no power of z with exponent higher 

than i + J, 

the  s i g h t  s ide  of (2.20) i s  i d e n t i c a l l y  zero, 

ND" N ' D  = o 

d 
Theorem 2.4 ( ~ a d e  's Representation   he or em) [ 13, p. 4211 

Hy-pothesis: 
00 

2. (i, j )  i s  an ordered p a i r  of nonnegative integers,  and 

R .  . ( f ,  z) i s  t h e  (i, j) pad6 approximant f o r  f .  
1 J  

Conclusions: There e x i s t s  a unique p a i r  of polynomials (pi j, Q ~ ~ )  

and a nonnegative in teger  A such t h a t  

(i) P. .(o) = ao, q j ( 0 )  = 1; 
1 J 

(ii) deg Pij 5 j - A, deg Qij 5 i - A; 



A - (zi+j+l); and (iii) z [f Qij - P..] - 
1 J  

(iv) Pij and Qi are relatively prime. 

Furthermore, the polynomials (pij, Q. .) defined by (i) - (iv) 
1 J  

also have the property 

Proof: By definition of the (i, j) ~adk approximant for f, 

'ij bas a representation 

where Nij and Dij are polynomials satisfying conditions I and 11. 

The greatest common divisor of N ij and Dij is of the form 

zhg(z), wh.ere 

Now there exist relatively prime polynomials Pij, Qij such that 

xij(z) = zhg(z)p. .(a), (2.21) 
1 J  

n .  1~ .(z) = zhS(Z)%j(Z), (2.22) 

P..(o) = ao7 ~ ~ ~ ( 0 )  = 1. 
1 J  

(2.23) 

By property I1 of the Pad6 approximant, we have 

[~.(Z)Q~~(Z) - P~~(~)IZ%(~) = (zi+j+l) 

[f(z)gij(z) - P~~(Z)]Z' = (zi+j+l), since bo # 0. 



Next, deg Nij 5 j 

deg [zhp 1 d j - r 3, by (2.21); ij 

deg P 5 j - A. 
i3 

Similarly, deg Dij 5 i 

A deg [z Q. .] 5 i - r 5 i, by (2*22); 
XJ 

deg qj 5 i - h .  

Thus, we have shown the existence of polynomials (Pij, Q ~ ~ )  

satisfying (I) - (iv). Conclusion (v) is immediate from (2.21) and (2.22). 

The uniqueness of (P ij' % j) satisfying (i) - (iv) is shown 
as follows. 

By Theorem 2.3, R is a unique rational function, with at most 
iJ 

i poles and j zeros. Since P and & are relatively prime and 
ij id 

thus have no zeros in common, it follows from 

that the zeros of P are exactly the same as the zeros of Rij, 
i j 

with 

their multiplicities, By the Factor Theorem for Polynomials [16, p. 6x1 

[ 9, p. 1211, the polynomial Pi is uniquely characterized (aside from 

a constant factor) by its zeros. Therefore, the zeros of Rij, together 

with the condition P. .(o) = ao, uniquely specim P ij" Similarly, Qi 
1J 

is uniquely given by the poles of 
Rid 

and & i . ( 0 )  = 1. 
J 

Definition. The unique pair of polynomials (Pij, ej) postulated 
in Theorem 2.4 is called the (P,  j) (for f). 



Theorem 2.5 

Hy-pothe se s  : 

2 (i, j )  i s  an ordered p a i r  of integers,  i - > 1, j - > 0. 

3. 9a i s  the  l a rges t  index such t h a t  the column vectors 

i 
.AmJ A ~ ' ~  . A a re  l i nea r ly  dependent, where 

= 0 f o r  v < 0. 

Conclusions : 

1. There ex i s t s  a unique p a i r  of polynomials (P, Q) such t h a t  

(i) ~ ( 0 )  = ao, Q(O) = 1; 

(ii) deg P - < j - m, deg Q - < i - m; 

(iii) zm[f& - PI = ( z  i+j+l); and 

2. The pa i r  of polynomials (P, Q) defined by (i) - (iii) i s  the 

( i  j) a d  pa i r  f o r  f .  That i s ,  P and Q haire the  addi t ional  

proper t ies  

( i v )  R. .(f, a )  = 
Z J  

(v) P and Q a r e  r e l a t i ve ly  prime. 

3. index m 21as the  addi t ional  properties: 



(vi) m = max A, the mxbm being taken over a l l  in t ege r s  A 

s a ~ ~ s f y i n g  

d e g P <  - j - A, d e g & < i  - - A 

where (P, Q) i s  the (i, j) Pad& p a i r  f o r  f .  

(vii) Either deg P = j - m, o r  deg Q = i - m, 



Proof: The exis tence  of P and Q i s  r e a d i l y  shown. Using t h e  

same cons tmc t ion  a s  i n  t h e  proof of Theorem 2.2, we g e t  two polymomials 

N and D, 

s a t i s f i ing  condit ions 1 and I1 of t h e  ( i ,  j )  Pad& approximant f o r  f .  

Tbesef ore 

Let 

Then (2.26) implies  

and ~ ( 0 )  = aO, Q(O) = I; deg P 5 j - m, deg Q 5 i - m. 

Also, fD - N = ( Z  "'") and (2.27) imply zm[ fQ - PI = ( z i+j+l)e (2.29) 

Therefore the  polynomials (P, Q) defined by (2.27) have t h e  p roper t i e s  

( f )  through (iv) . 

To prove t h e  uniqueness of P and Q, we show f i r s t  t h a t  P and 

Q a r e  r e l a t i v e l y  prime and then  apply Theorem 2.4. 

Certai.nly z does not divide P o r  Q, because of t h e i r  form (2.27).  

Suppose, now, t h a t  the  pol~momial 



divides P and Q. Then there a r e  polpomials  P# and such t h a t  

Prom equations (2.27) and (2.30), E)tc and &tc have the  form 

i-m-n 
p ( z )  = l + C 

k=l  

Consider now two polynomials N* and W defined by 

N*, DW. have t h e  following propert ies:  

degN* 5 j, d e g W  5 i DW. 0; 

and (2.29) implies 

zE$[f@ - PI = ( z  
i+ j+l) 

Furthermore, (2.31) and (2.32) imply t ha t  P may be wri t ten  



0 (k < m +  n) 

with T = 
1 (k = m + n) 

9%-m-n ( k = m + n + l ,  m + n + 2 ,  ..., i). 

The product fDx- is a power series: 

where 

From (2.33) and deg N* - < j we infer that the following coefficients cpanish: 

The i homogeneous linear equations (2.39 can be stated in the form of a 

k 
linear relation between the i + 1 column vectors A , with coefficients %: 

Substituting for % (k = 0, 1, . .., m + n) in (2.36)) we have 

By hypothesis 3, the linear dependence relation (2.37) implies n = 0. 

Therefore ~(z) a 1, and P and Q are relatively prime, as claimed in (v) . 

Now f, (P, &) and A = m satisfy the hypotheses of Theorem 2.4. 

Since P and Q are relatively prime, Theorem 2.4 ensures the uniqueness 

of the representation. This comple.t;es the proof of conclusions 1 and 2. 



To show m = max A, we note t h a t  because of ( i i ) ,  m s a t i s f i e s  t h e  

conditions (2.25) f o r  A. It remains t o  show t h a t  no la rger  value of A 

can s a t i s f y  (2.25).  

Suppose - > m  + 1, and s a t i s f i e s  (2.25). Then deg P - < j - rn - 1, 

deg Q - < i - m - E. Therefore, the two po.lynomials P, Q have the form 

j - m - l  
P(Z) = I: % z ,  no = ao; 

k=O 

Define c = E audy, t he  coeff ic ient  of zk i n  the  power s e r i e s  fQ. 
Is u+v=k 

From zm[ fQ - P] = (zi"+l) we obtain the  two se t s  of equrttions 

% = c  k 
(k = 0, 1, 3 - m - l), 

= j - m, j - m +  1, ,,., j - m + i)., 

I n  m t r i x  form, t h e  second s e t  reads 

By the  def in i t ion  of m, the  columns of the [ a ]  matrix i n  (2.38) a r e  

l i nea r ly  independent. Hence (2.38) can o n l y  have the  t r i v i a l  solution, 

contrary t o  t he  requirement (%O = 1. Thus we have proved t ha t  no value 



of A greater than m can satisf'y (2.25). Hence (vi) follows, and (vii) 

is a trivial consequence of (vi). 

The proof of Theorem 2.5 is complete. 

Relation between Theorems 2.4 and 2.5. Theorem 2.5 is a new and 

stronger version of the classical representation theorem 2.4. Theorem 2.5 

preserves the uniqueness property of the classical ~adk pair and has 

the added advantages that 

1. it gives sharp upper bounds for the degrees of the polynomials 

characterizing the (i, j) pad6 pix for a given power series f; 

2 it elMnates the classical requirement that the candidate 

polynomials P, Q for the pad6 pair be relatively prime. The property 

of being relatively prime tuxns out to be a result of, rather than a 

condition for, the choice of the pair (P, Q); 

3. the index m appearing in Theorem 2.5 is uniquely determined 

for each triple (f, i j), while the similar parameter A appearing in 

Theorem 2.4 is not unique. 

The non-uniqueness of A is demonstrated in the following example. 



pad6 table for f: 

By Theorem 2.4, the (i, j) Rid: pair for f is ( ) where 

(i) ~ ~ ~ ( 0 )  = ao' %j(o) = 1; 

(ii) deg Pij 5 j - h deg&ij 5 i - A ;  

(iv) Pi jJ relatively prime. 



The integer  A (see  conclusion of Theorem 2.4) has the following 

admissible values f o r  the  given power ser ies :  

For each pa i r  ( i  j )  the  index m (see Theorem 2.5) equals the  

maximum adxiss ible  value of A. 



Hypotheses: 
M 

2. (i, j) i s  an ordered p a i r  of non-negative integers;  and 

R, .(f, z) i s  the (i, j)  add approximnt fo r  f .  
L J  

3 .  ($, Q,) a r e  a pa i r  of polynomials i n  z ,  with 

d e g P  5 j, deg Q 5 i. 

4. r i s  the  l a rges t  in teger  such t ha t  

s i s  the  l a rge s t  integes such t h a t  

Conclusions: 

Proof: Half of conclusion 2, namely 

k' 
'ij 

= - 
Q 

r = S, (2.39) 

fo%lows t r i v i a l u  from the def in i t ion  of r and s i n  hypothesis 4. 

For the  other hal f  of conclusion 2, it suff ices  t o  show 

Then (2.39) and (2.40) together imply t h a t  r - > s r = S, i.e. r $ s, 

and thus conclusion 1 i s  validated. 



By Theorem 2.5, R .  . ( f ,  z) has a unique representat ion 
1 J  

where the  polynomials Pi j, qj  have t he  propert ies 

(i) P. . (o)  = ao, Qij(0) = 1; 
I J  

( i i )  deg Pij 5 j - m, deg Qij c i - m ;  

(iii) z m [ f ~ j  - P. .] = ( z  i +  j+ l )  
1 J  Y 

with m 2 0 defined i n  terms of t he  coeff ic ients  of f .  

Propert ies ( i )  and ( i i i ) ,  together with (2.41), give 

From th i s ,  by hypothesis 4, 

Now suppose r 2 s. Then, again by hypothesis 4, 

- - = [ f  - R. .] - [f - $1 = (zS) - (zr )  = (zS) 
Qij 1.J 

P Q . ~  - Pij Q = Q~~ Q (2'). (2.43) 

D o n  t he  proper t ies  of the  polynomials (P, Q) and ( P  Q )  we get 

deg [P &ij] C i + j - m 

deg [Pij Q] -5 i + j - m 



so t h a t  the  Lefi-hand s ide  of (2.43) has no powers of z with exponent 

grea2ter than i + j - m. k t  the  right-hand s ide  contains no powers of 

z with exponen% l e e s  than s  s 2 i + J - m + 1 by (2.42). Therefore the  

two s ides  of (2.43) have no non t r iv ia l  t e rn s  i n  common, and each s ide  must 

vanish iden t ica l ly .  Thus 

and so, f ina l ly ,  

This completes t he  proof of the  Pad& Theorem. 



FU3MRRKS: pad& cal led the  theorem jus t  proved "fundamental" t o  h i s  

theory. One i s  therefore surprised t o  f i nd  t h a t  the  place of t h i s  important 

theorem i n  the  pad6 theory has been obscured i n  some recent work. 

The d i s t inc t ion  between t he  defining propert ies I and I1 of t h e  

pad& approximation, and t he  conclusions of the  pad6 theorem, i s  most 

c l ea r ly  explained with the  a i d  of an example: 

2 
2 

Consider f ( z )  = cos z = 1 - -- 
2 

+ ..., and l e t  i = j = 1. 

The defining proper t ies  I and I1 give the  (unique) numerator 

and denonimator polynomials 

Check: deg Nll = 1 = deg D 
11 = 1 = deg Dll) and 

Z 
3 

f ( z ) ~ l l ( ~ )  - ~ ~ ~ ( 2 )  = - - 2 + ... = (23) .  

Now the  pad; theorem a s se r t s  t h a t  the  emansion of the  auotient 

i n  ascending powers of 2, agrees with more leading terms of the  power 

se r ies  f o r  f than does the  expansion of any other ra t iona l  function 

whose numerator and denominator a r e  of degrees not exceeding j and i, 

respectively.  

I n  our exmpbe, then, Theorem 2.6 claims that ,  of a l l  ra t iona l  

the  unique one whose expansion agrees f'unctions of t h e  form ~ ( z )  = 

with the  most terms of 



i s  Ria = P. The point, t o  note i s  $h& the  theorem does not y ie ld  an 

exp l i c i t  nuraericrzl index tbt aUows one t o  seduce a p r i o r i  how maw terms 

i n  the e q a n s i e n  of f are  ma$ched by the  h d 6  ayprox-nt. 

Such an index i s ,  however, provided i n  the c l a s s i c a l  de f in i t ion  of 

%he ~ d d  approx-nt: &opes%y $1 of the  h d $  approx-nt gives an 

exp l i c i t  l e a s t  u p e r  horn&, e l y  z~", on the  powers of z which a re  

mtched  i n  t he  e q s n s i o n  

This a s t i n c t i o n  between t he  d e f i a w  propert ies of the  gad6 

approximnt, and the  r e s d t i w  proper t ies  asser ted i n  the  h d 6  theorem, 

i s  not alvrays respected i n  "che recent l i t e r a t w e ,  We give three  specif ic  

instances: 

a. M e r ,  i n  h i s  recent (1965) straw of the  convergence proper t ies  

of sequences of a d 6  approx 

"In the [N, M] pad6 a p p r o x d n t  the  nmerator  b s  degree 61 and 

t he  denodnator degree N. The coeff ic ients  are  deternine8 by equating 

l i k e  powers of 2: En the  f o U o d n g  eqmtions:  

where $(z)/Q,(z) i s  the  [ N, 611 .Pad& approxireant t o  f (z )  . It 
This characteriztL"cion i s  c l ea r ly  inconsistent, a s  shown by t ak ing  

f ( z )  EZ cos z9 M = IN = L O  The f i r s t  of the  two equations gives 

1 P(Z) = $ ( z )  -- Z, A = - - *  2 
so $(O) = 0 f 1. 



b. Shanks, in his 1954 dissertation [14, p. 211 characterizes 

the pad6 approximant for f by two properties: 

"Property 1. Rkn may be written as the ratio of two polynomials: 

with the degree of sn 5 n and the degree of Dkn 5 k. But Dkn does 

not vanish identically, 

Property 2. The power series of Rkn agrees with that of f (z) 

to a higher power of z than any other rational function with degrees of 

numerator and denominator no greater than n and k, respectively." 

Shanks then cites Wall [17, p. 3783 as a reference for the assertion: 

"Property 2 is equivalent to the condition 

Actually, Wall neither proves nor even states that the two conditions are 

equivalent. The weakness of Shankst claim is evident from the same 

counterexmple used before: 

For f ( z )  = cos z, N1l = Dll = 1 satisw Shanks' properties 1 and 

c, In his 1962 book , Varga [I$, p. 2661 
w 

defines the Pad& approximant for f (z )  = Z avzY as the quotient of 
v=o 

polynomials n (z) and d ( 2 )  which are respectively of degree q 
P% P9 

and p. Assuming 



Varga now s e l e c t s  f o r  each pair o f  neu-~ewlive in tegers  p and q those 

polynomials n (z)  and d ( z )  such t h a t  t h e  T w l o r t s  serfeg e ~ a n s i o n  
Pq PS 

o f  n ( z ) /&  (2)  about the  o r i g i n  a p e e s  with as r n ~  l e a d i w  t e r n s  of 
Prl Pq 

f ( z )  a s  poss1bl.e. Vasga then c l a h s  "it is efideubt t h a t  the earpression 

gives r i s e  t o  p + q -I- 1 l i n e a r  etquations i n  ( t h e  u m s m  c a e f f i c i e n t s ) ,  

whose solut ion deternines these d n o m  coef f i c ien t s , "  

The inconsistency of  Varga's a s se r t ions  i s  r e a a l y  e d d e n t  from 

the  p r e v i o u s u  use6 c o m t e r e x q l e :  

f ( ~ )  = cos z, dll(0) + O  *dll(z) = 1  md y l ( z )  = 1, but 

To place t h i s  a s c u s s i o n  i n  proper perspective within t h e  pad6 

approximtion theory, %he following should be added. F i r s t ,  it i s  of 

course poss ib le  t o  construct  a consistent,  theory of %he pad6 approximation 

using Vasga's def in i t ion .  Chersey (1966) [ 2, p, 1743 has taken t h i s  

approach, c a r e m a y  a v o i d i x  $he p i t f d l s  along the  wetye 

Second, t h e  two qproaches  - arc? equiva%en"cor t h a t  c l a s s  of functions 

which have a n o w 1  ~ a d k  t ab le ,  This assertlion w i l l  be proved i n  

Corollary 2.9, with "&he aid of the next theorem, 



2.5 

Theorem 2.7 [13, p. 4251 [17, p. 3943 

2. (i, j )  i s  an ordered pa i r  of nonnegative integers, and 

R ,  . ( f ,  z) i s  the  (is j) Pad6 approximant f o r  f .  
1 J 

3 (pij, Q ~ ~ )  i s  t he  unique ( i ,  j )  Pad6 pa i r  f o r  f ,  

with 

deg Pij = p, deg Q,.j = q. 

Conclusions : 

1. There ex i s t s  a nonnegative integer r such t ha t  t he  power 

s e r i e s  - P. .] s t a r t s  exactly with the  power z L f  Qij lj 
pq+*l, o r  e l se  

f gij - P = 0 .  I n  the  l a t t e r  event, we s e t  r = m. 
i Li 

2. The ( q  + rl, p + r2) pad6 approximant fo r  f equals 

Ri j, with 

r r = 0 1, . . . r i n  case r i s  f i n i t e ,  
1' 2 

and rl, r2 = 0, 1, *. d i n  case r i s  i n f i n i t e .  

3 .  No entry other than those enumerated i n  conclusion 2 i s  equal 

t o  Ri j .  

Proof: The defining proper t ies  of the  Pad4 approximant imply 

Assertion 1 of the theorem i s  immediate. 



By hypothesis 3, (pij, C+j )  have the  following f i ve  propert ies 

(reference meorem 2.4) : 

( i i )  p (  j - A ,  q s  i - A ,  A >  0; 

( i i i )  A +  - > i + j ;  

( i v )  P and €$ a re  r e l a t i ve ly  prime; 
i j  

To prove asse r t ions  2 m d  3 of the  theorem, l e t  (u, v) be a pa i r  

of nonnegative in tegers .  By Theorem 2,4, necessary and suf f ic ien t  conditions 

fo r  

a re  t ha t  there  e x i s t s  a nonnegative integer k such t ha t  

p ( v - k ,  q ( u - k  (2.46) 

Our t ask  i s  t o  solve these inequa l i t i e s  fo r  u, v, and k(> - 0). 

Condition (2.46) i s  equivalent t o  

or, combined with (2.47), 



Hence 

Moreover, k - > 0 and (46) implies 

so t ha t  t he  following conditions a r e  necessary f o r  (2.45): 

The inequa l i t i e s  (49) val idate  asse r t ion  3 of the  theorem. 

To complete t he  proof of the  theorem, we only need t o  demonstrate 

t ha t  f o r  each choice of (u, v) i n  accordance with (49), there ex i s t s  

an in teger  k - > 0 sat is fying (46) and (47). We choose 

k = min (u  - q, v - p) .  (2.50) 

Then k - < u - q, k < v - p imply (2.'46). - 

Suppose u - q _< v - p. 

Then 

k + p + q + r  = ( ~ - ~ ) + p + q + r  

= u + p + r  

> u + v, by (2.49). - 

Similarly, u - q _> v - p k + p +  q +  r > u + v ,  - by(2.4-9).  

.'%herefore (2.4'7) i s  s a t i s f i e d  by k a s  defined i n  (2.50).  

It follows t h a t  (2.49) a re  both necessary and suf f ic ien t  conditions 

f o r  (2.45), and asse r t ion  2 ver i f ied .  

Assertions 2 and 3 a re  ver i f i ed ,  

- 34 - 



Remarks: Wall [U,  p* 3951 calls r the - oraes of the (i, j) 

pad; approximant. When the approxFmant Rij is noml, it is distinck 

from all other entries i r z  the ~ d &  $abb%, m d  tlatis k. = 0. For %his 

case we have the follodw coroPla~y of Theorem 2,7. 

2 Rij(f, Z) = is the (i, j)  ad: approximant for f, 

with Nij and D 
ij 

Conclusion: m e  f 0 1 1 0 d ~  condiLions are necessary and sufficient 

for R to be n o m a :  
ij 

(i) deg Nij = j, deg D = i. r j  

starts exactly with the power z i'j'l (not with a higher power). 

Proof: 
P 

Sufficiency: Suppose (i) and (ii) are true Apply Theorem 2.7. 

Then p = j, q = i- r = 0 by conclusion 1 of Theorem 2.7, and R ij 
is 

normal, by conclusion 3. 



Necessity: 

Let €$ j) be t h e  (i, j) Pade' p a i r  f o r  f .  By the 

uniqueness of K 
i j 9  

Since both quotients are  c l ea r  of common (noneonstant) factors, the 

numerator polynomials are equal t o  a constant factor ,  and the  denominator 

polynomials a r e  equal up t o  the  same constant fac to r .  

Applying Theorem 2.4, the re  ex i s t s  A - > 0 such t h a t  

p = d e g P i j  = degN < j - h 
i j  - 

q = deg&i j  = deg Dij --< i - h 

and 

By Theorem 2.7, there  ex i s t s  r - > 0 such t h a t  

a. Sugpose p + q < i + j, t ha t  i s ,  (i) i s  not s a t i s f i ed .  

I f  A = 0, then (2.51) implies 

therefore,  0 < r. 

If A > 0, then p + q - < i + j - 2h, by def in i t ion  of A. This, together 

with (2.51) implies i+ j+ l -k  - < i+j-2X+r+l, so 0 < X - < r and 0 < r .  

- 36 - 



Now 0 < I- implies t h a t  i s  not n o m l ,  by Theorem 2.7, Conelusion 2. 
i j  

By contraposition, Ri j i s  norm1 only i f  p -k q >  - i c j. EWt 

j - > p, i > g. Thus (i) i s  a n e c e s s a ~  condition fo r  t o  be normal, 

since 

b. Suppose ( i i )  does not hold. 

Then t he  expansion of  fDij - Nij i n  ascending powers of z s t a r t s  

w i t h  z i'j'rhJ r > 0. Again, by Theorem 2.7, Ri j 
occurs i n  a t  l e a s t  4 

posit ions of t he  Pad6 tab le  R i s n o t n o  
i 

. This completes t he  

proof of t he  corol lary .  

2. The ~ a d C  t ab l e  [ RUv(f, Z) 1 fo r  f i s  normal. 

3.  (i9 j) i s  an ordered pa i r  of nornegative integers.  

4. Nij' Dij a re  polynomials, deg Nij _< j, deg Did _< i, Dij # 0. 

Conclusion: 

The following two conditions are  ecpivalent: 

( i )  f ( z ) ~ ~ ~ ( z )  - N. . (z) = ( Z  i+J+l)  ; 
1J  



Proof: 

I f  (i) holds, then hy-pothesis 4 implies 

and 

But the  %dk tab le  fo r  f i s  normal. Therefore, by Corollary 2.8, 

the  expansion of f ( z )  - R. . ( f ,  z) i n  ascending powers of z s t a r t s  
1 J  

exactly with the  power z it-jclj and ( i i )  follows. 

Now suppose ( i i )  holds. Let (P, Q) be the  ( i ,  j) ~ a d k  pa i r  

f o r  f .  Since f i s  normal, Corollary 2.8 implies tha t  the  power s e r i e s  

f Q  - P s t a r t s  exactly with the  power z But ~ ( 0 )  = 1, so the  

P expansion of f - --- - - f - R i j  s t a r t s  with the  same power z it- j+l 
Q . BY 

Theorem 2.6, Conclusion 3, we have f o r  t he  given polyno ypothesis 4) 

since deg Nij - < j, deg Di j - < i. But r > i + j + 1, because of (ii). 

Theorem 2.6, Conclusion 2, shows t ha t  r = i + j + 1 implies 

The polynomials P and Q a re  r e l a t i ve ly  prime, and deg P = j, 

deg Q = j, because f i s  normal (corol lary  2.8). But t h i s ,  combined 

with (2.52) and hy-pothesis 4, gives 



j - > d e g N i j  2 d e g P  = j deg Nij = j (2.53) 

j deg Dij 2 deg Q = i deg Q,.j = i. (2.54) 

Together, (2*52 - 2.54) imply Ni j  = cP, D = cQ, f o r  some cons tan t  
i j 

c 4 0. Therefore 

by Corol la ry  2 . 8 ( i i ) .  Thus we have shown ( i i )  0-1. 

The proof of  Corol la ry  2.9 i s  complete. 

2.6 

So far, we h8ve considered r a t i o n a l  approximations r e l a t e d  t o  power 

s e r i e s  of t h e  form 

I n  connection wi th  t h e  theo ry  of  l i n e a r  dy-namical systems t o  be taken  up 

i n  Chapter I V ,  V and V9, we w i l l  be  looking f o r  t r a n s f e r  func t ions  which 

approximate s e r i e s  of  t h e  form 

Of course, t h e  s e r i e s  (2.56) and (2.57) may be transformed i n t o  

each o t h e r  by means of the simple r e l a t i o n s h i p s  



However, the  following important d i s t inc t ions  between the  two s e r i e s  

a r e  observed. 

- 1 
( i )  If t h e  s e r i e s  (2.57) i s  rewri t ten  a s  a power s e r i e s  i n  z = s 

the  constant term i s  zero, thus v io la t ing  a condit ion which has been 

assumed i n  the  development of the  pad; approximation theory. 

(ii) The pad& t a b l e  i s  e s s e n t i a l l y  a symmetric s t ruc tu re  i n  the 

-1 
sense t h a t  t h e  power s e r i e s  expansion of [ f ( z ) ]  has the  same form a s  

-1 
t h a t  of f ( z )  . In  contrast ,  the  power s e r i e s  expansion of [ ~ ( s )  ] has 

not the  same form a s  t h a t  of ~ ( s ) .  

Defini t ion:  Suppose f and Z a re  given, a s  i n  (2.56) and (2.57), 

and suppose the  pad6 t a b l e  f o r  f i s  normal. Following Wynn [30, p. 1491, 

we define t h e  E-array f o r  Z t o  be a lower t r i angu la r  matrix with r a t i o n a l  

elements &j) 
i 

(z, s) of t h e  form 

where ( j )  i s  a  polynomial of i t h  degree, 
Qi 

P i J )  i s  a  funct ion of the  form 



and t h e  s e r i e s  expansion of E!')(z, s )  i n  inverse powers of s agrees 
1. 

-21-J with t h a t  of % ( s )  a s  f a r  a s  t h e  t e r n  containing s The elements 

of  t h e  E-array appear i n  the  order  shown below: 

( j )  s tands a t  t h e  i n t e r s e c t i o n  of t h e  ( i  + l ) t h  column The element E4 

and t h e  ( j  + 1 ) t h  diagonal. 

(3 )  ,, ( 3 )  ( J )  of t he  f inc t ion  E~ Clearly, t h e  cons t i tuen t s  Pi , Qi 
be displayed i n  t h e  same arrangement. If we specify 4:) = 1 i n  (2.61), 

then, by Corol la ry  2.8, 

and 

where (pa, Q) i s  t h e  (n, m) pad6 p a i r  f o r  f .  

The c lose  r e l a t ionsh ip  between t h e  ~ a d k  t a b l e  and t h e  E-array i s  

shown even more c l e a r l y  i n  the  following proposi t ion.  



Hypothesis: 

Suppose 
In 

f ( z )  = Z akz , 
k=O 

and the  pad; t ab l e  f o r  f  i s  normal. 

CO 

-k-1 
Conclusion: I f  we define Z(S)  = Z aks , sz = l9 then the 

k=O 
whole E-array f o r  Z may be obtained from the  pad4 t ab l e  fo r  f  by 

transposing the  pad6 table,  delet ing the  terms lying above the  super- 

diagonal (i. e,,  the  diagonal s t a r t i ng  with the  second term of the  f i r s t  

row i n  the  transposed tab le ) ,  and placing t he  quanti ty E p )  = 0 a t  the  

peak of the  array. 

Conversely, pa r t  of the  pad6 t ab l e  fo r  f  may be obtained from 

and transposing the the  E-array fo r  Z by removing t he  entry Eo 

(1) E-array about the  diagonal Ei , i = 0, 1, . . . . 
ad6 pa i r  (pij, Qij) may be regarded a s  

a vector pa i r  

so t ha t  

( j )  i n  the  E-array may be regarded a s  a vector pa i r  Similarly, the en t ry  Ei 



so tha t ,  by (5.17)  and ( 5 . ~ 8 ) ~  

Now s u b s t i t u t e  i n  (2 -64) )  using the  appropriate expressions shown on the  

r i g h t  of (2.67) and (2,69),  t o  v e r i f y  t h e  a s s e r t i o n s  made i n  the  

proposi t ion,  

The c l a s s i c a l  d e f i n i t i o n  of the  pad6 t a b l e  assumes t h a t  the  power 

s e r i e s  t o  be approximted has a  nonzero constant term [ l l ] ,  [l3], 6141, 

[l7]. The assumption of zero-order s e r i e s  serves the  purpose of s impli-  

fying the  statements and proofs of theorems. The r e s t r i c t i o n  can be  

removed without d i f f i c u l t y ,  a s  will now be shown. 

eorem 2-2): Let g be a nonzer 

power s e r i e s  of order  B = ~ ( g ) ;  t h a t  is ,  

g ( z )  = zB f ( z )  

where 

Let ( i , j )  be an ordered p a i r  of nonnegative in tege r s ,  j  2 IT. Let 

rn = j - cs, and l e t  (pimy Qim) be the  (i ,m)  pad6 p a i r  f o r  f, defined 

a s  i n  meorem 2.4. Tbe (i, j )  approximant f o r  g i s  



Proof: 

I. deg Qim ( i 9 by d e f i n i t i o n  of pad6 p a i r ;  

Q,,(o) = 1 , by Theorem 2.4; 

deg[z''~~,] ( j , by d e f i n i t i o n  of pad6 p a i r .  

The de f in ing  condi t ions  of t h e  Pad6 approximant f o r  g a r e  t he re fo re  

s a t i s f i e d  by t h e  p a i r  of polynomials zUpim(z) and ~ ~ ~ ( 2 )  . 
For 0 - < j < a, we t ake  R .  . (g ,  z ) = 0, corresponding t o  N i j  = 0, 

1 J  
i 

Di j  = z i n  equat ion  (2 .2 ) .  Clear ly ,  

deg Nij  = 0 - < j ; 

Uniqueness (General izat ion of Theorem 2 .3 ) :  Having proved the  

ex i s t ence  of pad6 approximants f o r  genera l  power s e r i e s ,  t h e  r e s t r i c t i o n  

a $ 0 can now be de l e t ed  from Theorem 2.3. The proof i s  unchanged. 
0 

pad6 Representat ion (Genera l iza t ion  of Theorems 2.4 and 2 .5 ) :  

Suppose t h e  power s e r i e s  



i s  of order D = ~ ( g ) .  Let ( i , j )  be an ordered p a i r  of nonnegative 

in tege r s  and R . . ( g , z )  the  ( i , j )  pad6 approximant f o r  g. The con- 
1 J  

elusions of Theorem 2 . 4  remain v a l i d  Tor g,  except conclusions ( i )  and 

( i v ) ,  which must be changed t o  read:  

(i") P. . ( z )  2 O, 
i 

Q . . ( z )  = z , i f  0 < j < a ;  
1 J  1 J  - 

l i m  [ Z - ~ P .  . ( z )  1 = a ( O  = 1, i f  j > 0 .  
1 J  CJ 

- 
z 4 0  

( i v* )  P and Q a r e  r e l a t i v e l y  prime, provided t h a t  j > a ,  - 

Proof: 

epresent  g a s  Lhe product z o f ( z ) ,  where f ( z )  i s  a power 

s e r i e s  with nonzero constant term. 

2 .  For j - > o,  l e t  m = j-o-. The pad6 pa.ir (pin, Qim) and 

the  in teger  h > O p o s t d a t e d  i n  Theorem 2.4 f o r  f e x i s t  and a r e  - 
unique s ince  f s a t i s f i e s  the  hypothesis of Theorem 2 .4 .  

0 It i s  e a s i l y  v e r i f i e d  t h a t ,  f o r  j - > o-, t he  p a i r  ( z  Pini, Qim) 

and in teger  X s a t i s f y  (i*), (ii) and t h a t  

(iii) 

imp1 i e  s 



(id Pi,, Qim being r e l a t i ve ly  prime and Q.  ( 0 )  = 1 imply lm 

t h a t  zUpim and Q i m  a r e  r e l a t i ve ly  prime; 

implies 

4. For j < o, the  proof leading t o  equation (2.72) appl ies ,  and 

i 
the  pad6 pa i r  (0,z ), with h = 0, s a t i s f i e s  conclusions (i*), (ii), 

(iii) and ( v ) .  

To extend Theorem 2.5 t o  the general case, it i s  necessary only 

t o  change conclusion ( i )  t o  (i*), and (v) t o  (iv*), a s  s t a t ed  above, 

with corresponding obvious modifications i n  the  proof. 

~ a d 6 ' s  Fundamental Proposition: Let f be a nonzero power s e r i e s ,  

and l e t  a ( f )  denote the  order of f .  Theorem 2.6 was proved f o r  

u ( f )  = 0 .  It remains t r ue  f o r  a ( f )  > 0 .  

Proof: Let (i, j )  be an ordered pa i r  of nonnegative in tegers ,  and 

l e t  P, Q, r ,  s be defined a s  i n  Theorem 2.6. 

For j - > u(f  ), the  proof of the  generalized version of Theorem 2.6 

completely p a r a l l e l s  the  proof given i n  sect ion 2.4. 

Suppose 0 - < j < o ( f ) .  Then R . . ( f , z )  E 0,  and 
1 J  

where s = a ( f )  - > j + 1. 

- 46 - 



We will show that r > s - - - - 0. Then it follows that r ) s , 
Q 

and the proof will be complete. 

Certainly, by hypothesis 4, r - > s and Rij = 0 imply 

The left-hand side of (2.76) has no powers of z with exponent greater 

than j, while the right-hand side contains none with exponent smaller 

than s > j + 1. Therefore the two sides of (2.76) have no nontrivial - 
terms in common, and each side must vanish identically. Thus 

and 

Normal pad6 Approximants. Theorem 2.7 and its corollary 2.9 are 

generalized as follows. 

Theorem 2.11 

Hypotheses: 

@ ' k  
1. f(z)=Ca z ,  a =  cr(f) is the order of f. 

0 k 

2. (i,j) is an ordered pair of nonnegative integers and R . . ( f , , z )  
1J 

is the (i, j ) pad6 approximant for f . 
3. (pij, Qij) is the unique (i,j) pad6 pair for f ,  with 

deg Pij = P , deg Qlj = 9 a 



Conclusions : 

1. There e x i s t s  a  nonnegative in teger  r such t h a t  the  power 

s e r i e s  [fQij- P ] s t a r t s  exact ly  with the  power z  
i J  

p+qtr+l) o r  e l s e  

f Qij  - Pij = 0 and r = m. 

2.  The (q+r  l 7  p+r2) pad6 approximant f o r  f  equals R i j  , w i t h  

r19r2 = 0,1, r i n  case r is  f i n i t e  

and 

r1)r2 = 0,1, i n  case r i s  i n f i n i t e .  

3 .  No e n t r y  o ther  than those enumerated i n  conclusion 2 i s  equal 

t o  R , provided j  > o .  
i j  - 

Proof: The spec ia l  case IT = 0 was t r e a t e d  i n  Theorem 2.7.  

Suppose 0 < o - < j .  By the  genera l iza t ion  of Theorem 2.4, 

Also, the re  e x i s t s  an in teger  h - > 0 such t h a t  

(ii) p z j - h ,  q < i - h  - ; 

h 
(iii) z  [fQij  - P 1 = ( z  

i j  i+j+l) ; 

( i v )  Pij and Qij a r e  r e l a t i v e l y  prime; 

From (iii), 



But i+j -h+l  - > p+q+h+l, so  e i t h e r  the re  i s  an in tege r  r - > A s a t i s f y i n g  

a s s e r t i o n  1, o r  
f  Qi j  - 'i j 

= 0. 

Let (u ,v )  be a  p a i r  of nonnegative in tege r s .  By the  general ized 

Theorem 2 -4, necessary and s u f f i c i e n t  conditions f o r  

a r e  t h a t  the re  e x i s t s  a  nonnegative in teger  k  such t h a t  

p < v - k ,  - q - < u -  k (Theorem 2.4, ii) 

and 

k+p+q+r - > u+v (Theorem 2.4, iii). 

These conditions a r e  equivalent  t o  

Since k  - > 0 ,  we obta in  

The i n e q u a l i t i e s  (2.79) va l ida te  a s s e r t i o n  3 of t h e  theorem, f o r  j  - > 0 .  

The proof of a s s e r t i o n  2  i s  i d e n t i c a l  t o  t h a t  given i n  the  context of 

Theorem 2.7 ( see  p .  34).  

Counterexample t o  show Theorem 2.11 f a i l s  f o r  j < o . 

Consider f  = z 3  and j = O,l,2. For every nonnegative in teger  i ,  

the  (i, j ) pad6 approximant i s  R .  . ( f  , z )  . The Pad6 t a b l e  f o r  f  = z3 i s  
1 J 



shown below. Simi lar ly ,  every function f  of order a > 0 has a  pad6 

t a b l e  whose u leading columns a r e  zeros.  By de f in i t ion ,  the  pad6 

t a b l e s  f o r  a l l  such functions a r e  anomal .  

5 pad6 Table f o r  f  = z  . 

Corollary 2.12 

Hypotheses : 

a = order of f .  

N i j ( ~ )  
2 .  R .  . ( f , z )  = , j > a, i s  the  ( i , j )  pad6 approximant 

1 J  - 
f o r  f ,  with N and D r e l a t i v e l y  prime. 

i d  i j 

Conclusion : 

The following conditions a r e  necessary and s u f f i c i e n t  f o r  
Ri j 

t o  

be normal: 

( i )  deg N i j  = j , deg Dij = i - > O  . 

(ii) The expansion of [f Di - N .  . ] i s  of order i + j + l  . 
1 J  



Generalization of Corollary 2.9 and Proposition 2 .lo. 

In view of Corollary 2.12 above, the requirement a o / 0 is implied 

by the hypothesis that f has a normal Pad& table. Therefore, it is not 

necessary to state explicitly that a $ 0. 
0 



I n  Chapter 2, we were concerned with propert ies of the  Pad& tab le  
00 

k 
f o r  a rb i t r a ry  power s e r i e s  f ( z )  = X %zk,  a* # 0. We continue t h i s  

k=O 
invest igat ion i n  t he  present chapter, with the aim of expressing the  pad; 

approximants f o r  f a s  the  r a t i o s  of determinants, exp l i c i t l y  i n  terms 

of the  coef f ic ien t s  of f  ('Theorem 3.5). 

One of the  proper t ies  of the  pad4 tab le  discussed i n  Chapter 2 was 

t he  geometrical pa t te rn  t h a t  governs the  occurrence of equal approximants: 

I f  the  t ab l e  fo r  a  power s e r i e s  f  contains two equal pad6 approximants, 

then there  must be a  square block of ( r  + 1)2 equal approximants 

('Theorem 2,7) .  Frank [21, pp. 92-94] gave necessary and suf f ic ien t  

conditions f o r  the  Pad6 t ab l e  fo r  f  t o  contain a  square block with 

c o ~ n e r s  ( %  PI ,  ( q  + r, P), (¶. + r, P + r),  (q, P + 7 3 9  where P, q, and 

r are  a rb i t r a ry  nonnegative in tegers   h he or em 3.5).  We include a  proof 

of Frank's theorem t h a t  i s ,  perhaps, a l i t t l e  eas ie r  t o  follow than the 

versions given i n  t he  o r ig ina l  paper or  by Wall [IT, pp. 395-3981. 

Theorem 3.7 expresses the  pad4 approximant fo r  t he  power se r ies  f  

exp l i c i t l y  i n  terms of the  coeff ic ients  ( a ,  a ,  . . of the  se r ies .  

The beauty of the  method l i e s  i n  the  f a c t  t ha t  it proceeds d i r ec t l y  t o  the  

computation of numerator and denominator polynomials. 

The method thus avoids any problems t ha t  might a r i s e  i f  the  pad& 

approximant i s  t o  be cleared of common factors  i n  the  numerator and 

denominator. 



3 . 1  Def in i t ions .  

The fol lowing no ta t ion  > r i l l  be used f o r  c e r t a i n  f requent ly  r ecur r ing  

Hankel matr ices and determinants: Given t h e  sequence (a?,: k = O9 l> 

and two nonnegative in t ege r s  r, n, we define 

( .> A = det  Sr r 

Moreover, f o r  given nonnegative in t ege r s  i, j, N, and f o r  a  given 

power s e r i e s  f  



l e t  % denote t he  Nth p a r t i a l  sum of f ,  t ha t  i s  

N 
A (z) = Z %Zk. 
-N k=O 

I 

Taking a = 0 f o r  n c: 0, we define n 

T..(z) = det l a  

I n  par t icular ,  these def ini t ions  imply the  following propert ies:  



3.2 

Certain properties of the Hankel determinants A?) will be usef'ul 

later. These properties are stated in the follo~dng two classical lemmas. 

Lemma 3.1. [23s p. l20][4, p. 91 

For all positive values of n and r, 

the determinants being those defined in equations (3.1) and (3.2). 

The proof of this lemma is straightforward, but tedious and not 

very enlightening. BousehoLder [ 24, pp. 116-1-171 indicates the proof 

for r = 1, 2;  Henrici [4, pp. 25-26] sketches a similar verification 

for all admissible r. 

Lemma 3.2. [4, p. 281 (i) Bieberbach's version [25, pp. 319-3211: 

00 

Let f(z) = Z %zB be rational, 

Then 

a(") = o for all n > max (0, p - q + 1). 
Cl.4-1 - 

Conversely, let p and q be integers such that p > p - 1, and 9 6 0. 

A(") = 0 for n > p - q t I. Then f(z) is a rational mnction of the 
q4-1 - 

form (3.9), with c0 # 0, c # 0. 
¶. 



(ii) Dienes' version [26, p. 3231: 

The necessary and s u f f i c i e n t  condition t h a t  the  power s e r i e s  
m 

~ a , - z k  should represent  a r a t i o n a l  function i s  t h a t  there  be a number q 
0 
such t h a t  C A (")zn = ~ ( z )  i s  a polynomial. Then t h e  l e a s t  value of q 

9+l 

i s  t h e  degree of t h e  denominator, and t h e  degree of ~ ( z )  i s  not l e s s  

than p - q, p being the  degree of t h e  numerator. 

3. $ ConaZtiol~s %or a BlocliTTn3he Fad$ Table. 

Lemma 3.3. ( ' s~P  [~4, p. 221 f o r  specia l  case where a. 0. ) 

Hypotheses: 
CO 

k 
1. f ( z )  = 8 akz . 

k=O 

2 R.  .(f, z)  i s  t h e  (i, j) pad& approximant f o r  f .  
1 J  

Conclusions: 

then 

R - , j = i-1, j - Ri-l, j-1 = Ri j .  

h o o f :  To compute t h e  pad4 approximant - 1 ,  3-1' we l e t  

where 

1-I 

Di-l, j-1 
(z )  = E %zk 

k=O 

The denominator and numerator polynomials thus defined s a t i s f y  the  condit ion 

I1 f o r  the  (i - 1, j - 1) Bad6 approwimnt, $hat i s  



Form t h e  product 

M 

- -  k 
f ( z ) ~  - (z) = C CkZ i - ~ >  2-1 k-0 

where 

I n  order  f o r  ( '-1 j-1' 3-1 ) t o  s a t i s f y  condit ion I1 f o r  t h e  

( - l j - 1) ??ad6 a-pproximnt, tre need 

and 

The Last equations, tn- i t ten i n  matr ix form, a r e  

Eq. (3.12) s t a t e s  t h a t  t h e  i -vec tor  (diml, di-*? ..., do) must be 

orthogonal t o  t h e  row vectors  of t h e  [a]-matr ix.  Since t h e r e  axe only 

i-l row vectors  i n  [ a ] ,  they can span a t  most an i.-l dimensional 

i 
subspace of R . Therefore (3.12) always has a nontrivial.  so lu t ion .  Choosing 

any such solu t ion ,  we now determine the 2 by (3.11).  !Then 



( - 1  j-1' Dj-l, 3-1 ) s a t i s f y  cond i t ions .1  and 11, and we have c o r r e c t l y  

c o~~pu- t  ed. R s ince  it i s  unique. 
i-13 j-l  

(J-i.1) Suppose now t h a t  Bi " 0. 'Then t h e  row vector  

(aj) 
e * " 9  aj+i-l ) i s  i n  the  row space of t h e  [ a ]  matr ix i n  (3.12) 

and is,  therefore ,  orthogonal t o  t h e  vector  d i  d d ) chosen t o  
0 

s a t i s f y  (3.12) . But t h i s  impljes  

and as a r e s u l t  we can improve (3.10) t o  read 

This increase  i n  t h e  order  of approximation means t h a t  we may s e t  

* J J  = ( i  j-1' D l >  j-1 ) and 

For t h e  polynomials of t h e  p a i r  
( ~ i - 1 ~  3 9  Di-l, j ) c l e a r l y  have 

degrees no grea-tier than  j and - 1  respect ively,  and thus  property I. 

Further,  by- (3.14)9 they  s a t i s f y  property 11 of the  ( i  - 1 j )  pad& 

approximant Tor f. By a s imi la r  argument, we have R - 
i9 j-1 - Ri-l, j-l' 

Again, we may s e t  N - - z and D - - D l  The 

-pair ( N ~ ~ ~  D. .) s a t i s f i e s  both p roper t i e s  I, and 11 of t h e  (i, j )  
-=J 

~ a d e '  approxirnant f o r  f :  Property I because deg Nij - < j, deg Di _< i; 

and property 11 s ince  from (3.14) 

f 7 Cnis proves r i l e  lemiia, 



2. ( j )  i s  an ordered p a i r  of nonnegative in tegers ,  and 

IIiJ(f, z) i s  t h e  (2, J )  ~ a d k  q p r o x i m n t  f o r  f .  

ConcEusions: 

1. The determinants  Tij, Ui j  def ined  i n  (3.4) a r e  r e l a t2wXy 

prime ( i )  i f ,  and ( i i )  only i f  

( j - i + l )  
2 1 f  ni { 0, t hen  Ri = T .  - /UiJ .  

1 9  

Proof: 

l ( i i )  Suppose j i  = 0 Then by (3.7) and (3e8) 'i 

T. . (o)  = 0 and U .  .(o) = 0.  
1 J  1 3  

Therefore,  un le s s  Tij and U i j  a r e  i d e n t i c a l l y  zero, they  have a 

common f a c t o r  z. I f  Tij, U i j  a r e  zero polynomials, t hey  a r e  not 

re%ative$Sr prime, by d e f i n i t i o n  [g, p. 721. 

( j - i + l )  ( -  l ) ic  + o. l ( i )  and 2. Suppose Ai 

Then " c e  i c o l m s  of 

are l i n e a r w  independent. 
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Define 

(J-i+l) can be represented a s  t he  row vector Then Si 

( j - i + l )  
i 

= ( A ~ ,  A ~ - ~ ,  . . ., A ~ ) .  

Each Ak i s  an i X 1 column vector. Since the i columns 

( j - i+l )  AiJ Ai-l ,  . . ., A1 of Si a re  l i n e a r l y  independent, they must span 

i (j-i-1) the  space R . Therefore A' i s  i n  the  column space of i , and 
m = 0 i s  the  l a rge s t  index such t ha t  the  column vectors 

am, r e  l i nea r ly  de 

Now consider the  polynomials 

I 
P ( Z )  = - T. . ( z )  

c 1.J 

1 
Q(Z)  = - U. . ( z ) .  

c 1 J  

Frm (3.7) and (3.5) respectively, we have 

( i )  ~ ( 0 )  = a0, ~ ( 0 )  = 1 

T s  verify t ha t  

( i i i )  f &  - P = ( z  
i+ j+l) 



we proceed a s  follows. The value of T .  . ( z )  i s  unchanged i f  we add t o  
SJ 

the  f i r s t  row a l i n e a r  combination of t h e  o ther  rows. In p a r t i c u l a r ,  

34-k 
we add z t imes t h e  ( k  + l ) t h  row, k = l 2 , . Then t h e  

f i r s t  term of t h e  f i r s t  row becomes 

The o ther  terms of t h e  f i r s t  row a r e  changed s imi lar ly ,  increas ing  by 

i t h e  index of  each An ( n  = j - i j - i + 1, . j) Now 

T .  . (z)  = d e t  
1 9  

Therefore we can w r i t e  

Aj+iUij - T i j  = de t  

%y inspect ion,  z icj+l div ides  every polynomial appearing in t h e  

i+  j-t.1 
f i r s t  row of t h e  determinant i n  (3.25).  Therefore z divides  t h e  

determinant, and consequently 



But now 

since the proportionality factor c in(3.20) is merely a nonzero constant. 

As we have shown in the preceeding steps, the pair (P, Q) defined 

in ('3.20) satisfies all the conditions of Theorem 2.5, with m = 0. By 

result (v) of that theorem, we have 

as was to be shown (conclusion 2). 

Also, by result (v) of Theorem 2.5, P and Q are relatively 

prime polynomials, and therefore Tij and Uij are re 

This completes the proof of the lemma. 

Remark: The hypothesis a. # 0 may be removed if one restricts j to 

values not less than the order of f and proceeds as in the generalization 

of Theorem 2.2. (see Section 2.7.) Smaller nonnegative values of j < a(f) - 
give rise to the trivial case. R . (f ,z) = 0. 

iJ 



2 ( i ,  j )  i s  an ordered p a i r  of nonnegative integers ,  and 

R .  . ( f ,  z )  i s  t h e  ( i ,  j )  ~ a d k  approximant f o r  f .  
SJ 

3 (pi j> Q ~ ~ )  i s  t h e  (i, j )   add p a i r  of polynomials f o r  f, 

postu la ted  i n  Theorem 2.4, with 

deg Pij = p, deg % j  = q*  

4,  r i s  t h e  unique nonnegative in t ege r  such t h a t  the  power s e r i e s  

pi-q-t-r-kl 
[ f a i j  - P .] s t a r t s  exact ly  with t h e  power z , (See 'Pheorem 2.7.  ) 

1 J  

Conclusion: 

The f0910wiIIg f i v e  condiLions a r e  necessary and s u f f i c i e n t  f o r  

R . . ( f ,  2) = 
1 J  

va lues  defined by ( q ( u 5 q - l - r ?  p < v < p f  - - r ) :  

( i )  a (p-q-l-1) f 0 
4 

( i i )  J ~ - q + 2 )  f 0 

( i i i )  A ( ~ - q )  q-kl +. 0 (3.29) 

( *(p-q+1) q-l- rl-1 + 0 

(v>  n (p-q+l) _ 0 (k  = 1, 2, - ., r )  . 
g_+ k 

Note: I f  r = 0, t h e  condit ion (v) i s  not p r e s e n t  By Theorem 2.7, r = 0 
P 

implies  ( p) = ( j )  andi with t h i s  subs t i tu t ion ,  condit ions ( i )  

through ( i v )  a r e  necessary and s u f f i c i e n t  f o r  R. 1 J  .(f, z) t o  be normal. 

[ l l ,  pa S *  34ILJ-3, 4271. 



Proof: By Theorem 2.7, the following five conditions are necessary 

and sufficient for - (q_<u(q+r, p < v < p + r ) :  
Ri j - Rw - - 

(i.8) + Rq-l,p-l gP 

(ii 9 ,  f Rq-l, p 9P 

(iii O )  + Rq, p-l w (3 30)  

(iv ') ' Rq+fi19pPkl 9P 

(v') R = R  
gP q+k, ptk 

(k = 1, 2, . . *, r). 

It is convenient to include the condition (it) although, by Theorem 

2.7, we have (if) (ii') and (iii'). 

From Lemma 3.3, we obtain (by contraposition) : 

[let , 3) = q ,  P in (3.911. 

[let (i, j) = (q, P +  1) in (3.9)l. 

It remains to show (vt) (v) . By Theorem 2.4, in order for (pij, Q~ j) 

to satisfy condition I1 of the (q + k, p + k) Pade' approximant 

(k = 1, 2 . . , r )  we need 

As in Theorem 2.4, let 



and 

where c = C a d  
V 

a tpv  a B' 

Then t h e  condition (3.31) can be wr i t t en  

n = c  ( v  = 0, l, . . . , p) 
v V 

and 

c = O  ( v  = g + 1, p + 2, ..., p + q + k) 
v 

( k  = l7 2:, ,.., r ) .  

Equations ( 3 . 3 ~ ) ~  wri t t en  i n  matrix form, a r e  

Choose any k from 1 2 . . , r) Equation (3.33) can be s a t i s f i e d  

only i f  the  q + 1 c o 1 m s  of t h e  [a]-matrix a r e  l i n e a r l y  dependent. 

Therefore A(P-~") = 0, k = 1, 2 . , r and thus (v)  i s  necessary 
4"k 

f o r  ( v 8 ) .  



We now prove t ha t  (3.29) i s  su f f ic ien t  fo r  (3.30).  From (i) we 

conclude (&emma 3.2, proof of conclusion 2) t ha t  there  ex i s t s  a pa i r  of 

r e l a t i ve ly  prime polynomials (P, Q) such t ha t  

The polynomials (P, Q) a re  uniquely determined by the  conditions 

(3.34) and (3.35)$ and the  same conditions imply t ha t  the  coeff ic ients  
Y 

of Q = 1 + C d*zq s a t i s f y  the matrix equation (3.33), with k = 0.  
v=o 9 

From (ii) and (iii) it follows t h a t  P and Q are  exactly of 

degree p and q, respectively. For Q, t h i s  r e su l t  i s  immediate 

from (3.33), since k = 0, A ives d* # 0. Suppose t ha t  
9 

%hen (3.36) gives 

I n  par t icular ,  n* = [ a a ... ap] 
P P-q' p-q+l 



But (iii) implies that S'P-') is a nonsingular matrix: 
9t-1. 

a- a ... a 
P-(2 p-q+?- P 

s(~-d = a a ... a 
st-1 p-qt-1 p-qt-2 Pt-1 

* e .  

a a 
PJPl 

a 
P P"4 

Therefore, the rows of S (P-') span the space R"~. The vector 
9+1 

(a , dq45 . . ., do) is a nonzero vector in Rqll, orthogonal to all- q 

rows of S (I)-') except the first row (by equation ( 3 *  33), with B = 0) 
s-t.1 

Therefore the scalar product in (3.37) cannot vanish, and (iii) 
n P 

How R = P/Q (P, Q) relativew prime and deg P = p, deg Q = q, 
9F, 

implies 

( i f )  w + Rq-l,p-l 

(ii8) R ¶P $ Rq-l,p 

(iii') R # RQpmle 
43? 

To prove (v '), let R q+k5 p k  = ' D k  where 

Since fn(k) - N(B) = (~~~'*"~l), E have 



P+k+l 
rows 

where k 
d p  = 1) no = aO. 

A l s o  

Since A ( ~ - 9 + 1 )  = 0, s+l comparison w i t h  (3.33) shows t ha t  a nontr iv ia l  

solut ion of (3.40) f o r  k = 1 i s  

Subst i tu t ing i n  (3.39), one obtains 

n  n  (1) = ( l )  = 0, 
0 

( v  = 1, 2,  .. ., p + 1 ) .  (3.42) v- 1 

Hence jg(l)/~(') = p/g 

and ( v ' )  holds fo r  k = 1. Then, since A(P-~-') = 0, 
q+2 

it fo l l ows  that 

f o r  k = 2, (3.40) has the nontr iv ia l  solution 

while (3.39) gives 



Consequently, N = N (l)/D(l' = P/Q. On continuing t h i s  

argument, we conclude t h a t  ( v ) holds. 

FinaLly7 ( i v  9 holds. For i f  not, we would have 

which i s  impossible by v i r t u e  of ( i v )  . 
This completes the  proof of Theorem 3.5. 

Hypotheses: 

1. {ak) i s  an i n f i n i t e  sequence of r e a l  numbers, a, f 0, 0 2 0, 

ak = 
0 f o r  k < cr. 

2. (i, j) i s  an ordered p a i r  of nonnegative in tegers ,  

a re  defined by 

('-i"' i s  the  Hankel matrix defined by (3.17).  S = S. 
1 

4, m i s  t h e  l a r g e s t  index such "cat t h e  c o l m  vectors 

i 
A ~ ,  ~~l~ . , A are  l i n e a r l y  dependent. 



Conclusions : 

Proof: 

( i )  Suppose m = 0, 

i i-l b 
'Then the  columns of S = [A , A , . . ., A ] a r e  l i n e a r l y  

independent and 

( j - i+l )  
det  S = Ai # (I+ 

( i i )  Suppose m = i, 

i Then A = 0 and, i n  pa r t i cu la r ,  aj-i+l = 0. 

Therefore 

Also, t r i v i a l l y  by d e f i n i t i o n  (3.2), 

(iii) Suppose l - < m < i. 

A i s  t h e  minor consis t ing  of the  f i r s t  i - m + 1 rows 

i i-l 
of the  matrix M = [ A  , A , . . ., A*]. But the  columns of M a r e  

l i n e a r l y  dependent, so 

This completes t h e  proof of t h e  lemma. 



Hypotheses: 
a, 

2.  (i, j) i s  an ordered p a i r  of nonnegative in t ege r s .  

3 ,  d i s  t h e  smallest  nonnegative in t ege r  such t h a t  

Conclusions: 

1. O < d < i .  - - 

2. The polynomials T an6 U defined by equation 
i -dJ  j-d i -d7 j-dJ 

(3.4) ,  have a t  most j and i zeros, respect ively,  (counting mult i -  

p l i c i t i e s ) .  They have no zeros i n  common. 

3. The (i, j) pad; approxjmant f o r  f i s  

4. a - - Rid ( u  = iJ 5- - 1, i - d; v = j,, j - l9 . s * 9  2 - d ) *  
uv 

Proof: Conclusion 1 i s  obvious from t h e  d e f i n i t i o n  Ahn) = 1, n - > 0. 

Suppose d = 0. By Lemma 3.4, f 0 implies  t h a t  Tij7 Ui 

adre r e l a t i v e l y  prime polynomials and 

From ( 3 - 5 ) >  deg T i j  5 39 deg U i j  _< i n  



Suppose d > 0. 

By repeatedly applying Lemma 3,1, we obtain (3.47) :, since 

'ij = R i-d, j-d 

- - , by Lemma 3.2. 
'i-d, j-d 

( j-i.1) Conclusion 2 follows directly from 
Ai - $: 0, by Lemma 3.4. 

In particular, if d = i, then by (3.6) 

- - 
Rij - - Aj-i. 

'0, j-i 

Conclusion 4 is a trivial consequence of (3.50), by Lemma 3.6. 

Remarks: The method displayed in Theorem 3.7 depends on finding 

between singular and nonsingular matrices. In practice, round-off errors 

will obscure the distinction. It is, therefore, of some interest to note 

the effect of an erroneously large choice of d. This will happen if a 

nearly singular Hankel matrix is considered to be "singular" (by the 

criteria used in a given computer algorithm). As a result, the computed 

(i, j) pad; approximint in (3.47) will Se cleared of numerator and 

denominator factors which are not strictly cancellable. 

The theorem is a refinement of Lemma 3.4. (~robenius [3, pp. 1-51. ) 



[30, Pa 1591 

Hypotheses: 

2. The pad; t a b l e  f o r  f ( z )  = Z %zk i s  normal. 
k=O 

3. (i, j) i s  an  ordered p a i r  of nonnegative i n t e g e r s .  

Conclusion: 

Let t h e  p a r t i a l  sums Z~ of t h e  i n f i n i t e  s e r i e s  Z be denoted by 

-I\-l  
and l e t  aZN = ZN+r - ZN = &NS 

Then t h e  ( i ,  j) element i n  t h e  E-array f o r  Z i s  

Proof: 

As i n  Chapter 11, equat ion (2.60)~ we can w r i t e  



where 4') i s  a monic polynomial of degree i, and P (3)  i s  a 
i 

meromorphic f'unction of s .  [Equation (2.62) 1 . By Corollary 2.8, we 

have, a s  i n  equation (2.64) 

- i + l  ( j )  
s Pi ( s )  = Pi9 i+  j -1 (4 ,  S Z  = 1 

and 

i ( j ) ( s )  
s Qi - - Q i ,  i + j - l ( z ) ~  S Z  = 1 

/ 
where ('i, i + j - l 9  %, i+j-1 

) i s  t h e  ( i  i - )  Pade p a i r  f o r  f ,  

Using t h e  r e s u l t  of Theorem 3.7, 

SPj j )  ( s )  
- - 'i, ji-i-1 ( 2) 

E ! ~ ) ( z ,  1 s )  = 

"i, ji-i-1 ( 4  

The Pad; t a b l e  f o r  f  i s  normal, so A[') 0 and 

Now, t h e  r e spec t ive  d e f i n i t i o n s  of $ i n  (3.3)  and ZN i n  (3.53), 

with ssz = I, imply 



By d e f i n i t i o n  (3.4)  

-i-lZ - i 
S " j+l . . ' 

j sz j+i 

S~"AZ sjs2Az ..s s 
j+i+l 

2 j - k l  j+i 

-- d e t  
e .  0 

j+i+lm j+2i  
S . .* 

j+i j+ei- 

where s z  = 1. 



Final ly,  s u b s t i t u t i o n  of (3.61) and (3.62) i n t o  ( 3  -59) gives the 

des i r ed  r e s u l t ,  and t h e  co ro l l a ry  i s  proved. 

Remrk: Comparing Theorem 3.7 and Corollary 3.8, we note t h a t  t h e  

l a t t e r  assumes normality of t h e  ~ a d g  t a b l e  a s  a n  added r e s t r i c t i o n  on f. 

I f  t h i s  condi t ion  i s  not  f u l f i l l e d ,  c e r t a i n  formal d i f f i c u l t i e s  e x i s t  i n  

t h e  de r iva t ion  of r e s u l t s  p a r a l l e l i n g  those of Theorem 3.7. A theory of 

E-arrays f o r  t h e  genera l  case i s  not y e t  ava i l ab le .  

The r a t i o n a l  expressions R. .(f, z) o r  EiJ)(Z, s) which may be 
1 J  

obtained from t h e  s e t  of c o e f f i c i e n t s  a  k = 0 l . , 2 - 1, a r e  

those e n t r i e s  i n  t h e  pad& t a b l e  ly ing  upon and i n  t h e  t r i a n g l e  whose 

v e r t i c e s  coincide with t h e  approximants 

and those e n t r i e s  i n  t h e  E-array which l i e  i n  and upon t h e  t r i a n g l e  whose 

v e r t i c e s  coincide with t h e  f'unctions 



As pointed out by Wynn [30, p. 1711, numerical experience supports 

the claim that, in general, for prescribed values of the arguments z 

and s, the expressions in %he sets (3.63) and (3.64) for which 

are a minimum, are given by i + 1 = j = r, or i = j t- j = r, or 

m = 0, n = r. 



One of the problems in the theory of linear dynamical systems is to 

construct models from input-output data', This is variously known as the 

problem of "modeling", "process identification", or "constructing a 

realization". While special, distinctive meaning bas been given to each 

of these terms, the object is generally to find a mathematical model which 

lends itself to computer simulation. 

The explicit determination of such a mod-el is the subject of B.L, Hots 

dissertation 161. In particular, Ho conside-m the problem of constructing 

state-variable models of Linear, stationary, finite-dimensional, multivariate 

dynamical systems. His algorithm is based on the solution of the "algebraic 

realization problem", defined as follows: 

Given an infinite sequence of real (p X p) matrices, 

?4 = (yo' Y1, Ye, . . .), to find real matrices F, G, H such 

that 

where p = (n X n) matrix 

C- = (n X m) matrix 

H = (p X n) matrix. 

Following the accepted terminology, any solution (F, G, H) of the 

algebraic realization problem is called a of Y n is the 

dimension of the realization, and a solution with the smallest possible 

dimension n is called a 0 





Note: The definition (4.3) is consistent with that made in Chapter IT1 when 9 

(k) is a scalar sequence. In this case (p = m = I), we set det S!k) = Ar as 

in (3.2). 

2. If Y satisfies the linear recursion relation (4.2), let M 

be the (pr X pr) block companion matrix 

where 0 = (p X p) zero matrix 
P 

I = (p X p) identity matrix. 
P 

3. If Y satisfies the linear recursion relation (4.2), let N 

be the ( m r  X m r )  block companion matrix 

4. For given positive integers u, v (u - < v), let EUv be the 

(u X v) matrix 



I n  particul-ar,  i f  r i s  a p o s i t i v e  in t ege r  and v = us, we abbreviate  

EU = E u, u r  (4 .7 )  

1. Y = (yo' YIJ . . .) i s  a sequence of matr ices s a t i s f y i n g  (4 .2 )  f o r  

some pos i t ive  i n t e g e r  r .  

2. i, j a r e  nonnegative in tegers .  

t h e  matr ices S, M, N having been defined i n  (4.3),  (4.4),  (4 .5) ,  

respect ive ly .  

Proof: Let j be an  a r b i t r a r y  nonnegative in teger .  We s h a l l  prove 

by induction on 1. (4.8) i s  obviously t r u e  f o r  i = 0.  

Suppose (4.8) holds f o r  an a r b i t r a r y  f ixed  in t ege r  i - > 0. Then, 

because t h e  c o e f f i c i e n t s  (al, 4, . . ., a,) of M and N s a t i s f y  (4 .2) ,  

M i+ls!j) = mr ( i-+j > = 1; ( i +  j + ~ )  - - s( i+J)N = ( j )&+l .  
r r r 

Therefore (4.8) holds f o r  i 4 1. By mathematical induction, 

t h e  lemma holds f o r  a l l  i - > 0. But j was a r b i t r a r y ,  so t h e  proof i s  

v a l i d  f o r  a l l  nonnegative i, j. 

16, p. 111:  

Assume t h a t  a rea1iza"con (F, G, 3 )  of dimension n e x i s t s .  



n n-l n- 2 
Let $(z)  = z - plz - B2z - . . . - p , p = 1 be an annihilating n 0 

polynomial of F.  h he Cayley-Hamilton Theorem guarantees the existence 

of ) Then 

so that (4.2) holds with r = n and ari = pi, i = l7 2, . . ., n. 

Conversely, suppose (4.2) is true. By. Lemma 4.2, this implies 

The first block in S!i) is Yi. Therefore 

and 

is a realization of Y by (4.1). 

The folloang lemma prepares the way for Hogs minimal realization 

algorithm. 

Lemma 4.3. 

Hypotheses: 

1. 3 is a sequence of matrices satisfying (4.2) for some positive 

integer r. 

2 (F, G, H) is a realization of 3. 

< dim F. Conclusion: rank Sr - 



Proof: By hy-pothesis, Yk = H$G, all k - > 0. Therefore (0) 
r 

can be factored as follows: 

Let 

V' = [A' F'H' ... (F')~'$'] 

w = [ G  FY; . . . F'-~G] 

where the prime denotes the transpose of a matrix. Then 

(0) Now rank Sr _< min(ranlr V, rank W) - < d-im F. 

Theorem 4.4. (Ho 's realization algorithm) [6, p. 131 

Hypotheses: 

1. Y is a sequence of (p X m) matrices satisfying (4.2) for 

some positive integer r. 

2. S k  (k = 0 1, . ) are generalized Hankel matrices for 3, r 

(O) = n. as defined in (4*3), with rank. Sr 

3. P and Q are nonsingdar matrices, of dimensions (pr X pr) 

and (mr X mr) respectively, and such that 

i. e., PS(O'g is the canonical diagonal form 
r 



Conclusion: 

Let 

F = E  (1) n, prPSr w A, m5 
( n  X n) matrix; 

(0 )  G = EnSprPSr EAs ( n  x m) matrix; 

H = E S  (0)  
p r wA,mr~ ( p  X n) matrix. 

Then (F, G, H) i s  a minimal real iza, t ion of the  sequence 3- 

Proof: The existence of su i t ab le  matrices P and Q i s  a well-known 

f a c t  from l i n e a r  algebra.  [22, pp. 133-1411 

Let 

Then hypothesis 3 gives 

From the  d e f i n i t i o n s  of F, P and Q, 

By Lemma 4.2, 



Using Lema 4.2 and (4.15) repeatedly, we have the general result 

Theref ore 

F is an (n X n) matrix, and rank S p )  = n by hypothesis 2. By Lemma 

4.3, the realization is minimal. 

Remark: Theorem 4.4 solves the algebraic realization problem stated 

in the introductory paragraphs of this chapter, whenever such a realization 

exists. The following proposition, due to Ho [6, p. 481, demonstrates 

that the algebraic realization problem is equivalent to the problem of 

finding the (minimal) realf zation of linear, stationary, f inite-dimensional 

dynanica,l systems from their input-output descriptions . A remarkable 
feature of this proposition is that it ~pplies equally to discrete-time 

a,nd continuous-time systems, and that the input-output data may be presented 

either in the t h e  domain or in the transform domain. 



For the discrete-time system 

the time-domain description is given by the pulse-response function 

The transform-domain description is given by the z-transform transfer 

function 

For the continuous-time system 

the time-domain description is given by the impulse-response function 

The transform domain description is given by the Laplace transform 

transfer fbnction 



[6, p. 481 

The following four problems a r e  equivalent t o  the  algebraic r e a l i z a t i o n  

problem: 

(i) Given the  function k +Yk, f i n d  a t r i p l e  (F, G, H) of constant 

matrices such t h a t  (4.20) holds * 

( i i )  Given t h e  funct ion z + ~ ( z ) ,  f ind  a t r i p l e  (F, G, H) of 

constant matrices such t h a t  (4.21) holds. 

( i i i )  Given the  function t + ~ ( t ) ,  f ind  a t r i p l e  (F, G, H) of 

constant matrices such t h a t  (4.23) holds. 

( i v )  Given t h e  f'unction s -+ ~ ( s ) ,  f i n d  a t r i p l e  (F, G, H) of 

constant matrices such t h a t  (4,24) holds. 

For a proof and f u r t h e r  discussion of t h i s  proposition, the  reader 

i s  re fe r red  t o  the  paper by I3o and Kabman [36 ,  p. 4531. 

I n  t h i s  section, we present  a special ized version of B.L. ~ o ' s  minimal 

r e a l i z a t i o n  algoritkm. The spec ia l i za t ion  i s  accompanied by the  achievement 

of a number of des i rable  new proper t ies ,  

For example, t h e  one-to-one correspondence es tabl ished i n  Corollary 4.10 

has no p a r a l l e l  i n  Ho% theory. By showing t h i s  one-to-one correspondence 

between minimal r ea l i za t ions  (F, G, H) and generating matrices (v, w),  

we demonstrate t h a t  t h e  new algorithm i s  t h e  sharpest possible, subject  

t o  t h e  requirement t h a t  e v e q  minimal r e a l i z a t i o n  may be obtained. 



We note, too, that the generating pair (v, W) in Corollary 4.10 

is the same pair of matrices whose rank determines the complete controllability 

and observability of stationary linear dymmical systems. [7; p, 2011, 

[8; p. 1703, 127; pp. 499-5061, [29; p. 531. The beauty and significance 

of the reciprocal relations (4.69) and (4.70) is obvious. 

The close similarity, as well as the difference, between the compu- 

tations for B.L. Ho's algorithm and the new algorithm are brought into sharp 

focus in Proposition 4.11. B.L. Hots algorithm is phrased and proved in 

such a manner that the whole matrices P and Q appear. The new algorithm 

operates only vith submatrices of the matrices P and Q , viz., with the 
(0) parts which lie in the column and row spaces of Sr 

Hy-potheses: 

1. Y is a sequence of (p X m) matrices satisfying (4.2) for 

some positive integer r. 

2. Rank Sy) = n, where Sr) is the generalized Hankel matrix 

defined in (4.3). 

3, (F, G, H) is a minimal realization for Y, and 

Conclusions : 

1. The columns of V are a basis for the column space of (0) 
'r . 

The rows of W are a basis for the row space of (0) 
Sr * 



t t  
2 !The pseudo inverses V , W are given by 

Note: See Appendix B for definition and properties of pseudo inverse. 

Proof: 

1. Since (F, G, H) is a minimal realization, we have 

dim F = n. But 

and so we have 

n = rank S p )  - < min(rank 11, rank W) - < max(rank V, rank W) - < dim F. 

Therefore, dim F -- n implies the well-known result [ 8, pp. 169, 1701 

Since V has exactly n colms and W has exactly n rows, 

Conclusion l follows immediately. Also, the system represented by (F, G, H) 

is completely controllable (since rank W = n) and completely observable 

(since ra* v = n). [6; p. 501. 

2. To show Conclusion 2, write V = VI and W = InW. Then (4.26) n 

is readily verified by the construction given in Appendix B, Section 2. 

3. Since (F, G, H) is a realization, we have 



Therefore, the  product vF% i s  a block matrix whose matrix elements 

a r e  p rec i se ly  t he  elements of (k) 
Sr " 

This completes t he  proof of the  l e  

Lemma 4.7. 

Hy-potheses: 

1. Y i s  a sequence of ( p  X m) matrices sa t i s fy ing  (4.2) fo r  

some pos i t ive  in teger  r. 

2. S(k) (k = 0, 1, 2, . . .) a r e  generalized Hankel matrices f o r  r 

Y, as  defined i n  (4.3), with rank S(O) = n. r 

3 ,  B and C a r e  matrices with the  following propert ies:  

( i )  B i s  a ( p r  X n) matrix whose n columns a r e  a bas i s  f o r  

(0)  * the  column space of Sr , 

(ii) C i s  a ( n  X m r )  matrix whose n rows a r e  a bas i s  f o r  the  

row space of ( 0 ) .  Sr 

(iii) BC = s ( O )  = S, say. r 

Conclusion: 

For each pa i r  of nonnegative in tegers  (ij j), 

the  matrices M and N having been defined i n  (4.4) and (4.5), respectively.  

Proof: 

By Lemma 4.2, 

N j  = S Ni", and MS = SN. 



merefore,  taking k = i -4 j, i t s u f f i c e s  t o  show t h a t  

-t 
(k = 0, 1, ...). $S &ct = ($s NC ) , 

By Hypothesis 3, we deduce (see Appendix B.h(ix))  

1- I- 
St = C B .  

Certainly, (4.27) i s  t r ue  fo r  k = 1. 

Suppose (4.7) i s  t r ue  fo r  k equal t o  some f ixed posi t ive  in teger  q. 

Then 

(B'S N C ~ ) ~ "  = (B'S Ncl-)(dS N % ~ )  

= B ~ M S N ~ C ~ ~  by def in i t ion  of S' (see Appendix B.1) 

' q-41~-t, by Lennaa 4.2. = B S N  

Therefore, (4.27) i s  t r ue  fo r  k = 1 2 3, . by induction. 

For k = 0, we have 

This completes the  proof of the  Pe 

Lenuna 4.8 [6; p. 171 

Hypotheses: 

Y is a, sequence of (p  X m) matrices sa t is fying (4.2) f o r  some 

posi t ive  integer r. 



I. Any two minimal realizations (Fk, GkJ %), k = 1, 2, of 

the same sequence Y are isomorphic: There exists a nonsingular matrix 

T such that 

2. The matrix T in (4.30) is given explicitly by 

where 

and 

Define 

Proof: 

BY Lemma 4.6, 

Assertion: 



s of Vk a re  a bas is  f o r  the  column space 

sf S = V W and the  rows of Wk a re  a bas is  f o r  the  row space of S; k k' 

f o r  k = 1, 2 .  

By the same lemma, 

Therefore, 

t 
Vkvk = I and W ~ W ;  = I. 

Now 

Again, 

Using asse r t ion  (4.33), we obtain 

The asser t ion (4.36) i s  proved. 

Now (4.36) shows t ha t  T and U a re  nonsingular and t ha t  

-1 
U = T Also, from (4.33), (4.35) and (4.37), 



Substi tut ion f o r  V1 and W1 from (4.38) i n to  (4.34) gives 

which, i n  turn, y ie lds  

where 

t -1 t But U" = (v,v,) = V2V1, by Appendix ~ . 4 ,  proper t ies  ( i i ) ,  ( i i i ) ,  

and ( i x )  . Therefore 

. From (4.32) Gk - - WkE~,mr~  k = 1, 2; 

and 

- 
Hk - En, prVk, k = 1, 2. 

(4.42) 

Substi tut ion of W2 = u - h l  = TW1 from (4.38) i n to  (4.41) gives 

- 
G2 - mlE;mr = TG1. (4.43) 

Similarly, subs t i tu t ion  o f  V2 = V ~ T - '  from (4.38) i n to  (4.42) gives 

In view of  (4.39), ( 4 . 4 0 ) ~  (4.43) and (4.44), the  lemma i s  t r ue ,  

.. 94 , 



Theorem 4,9 (unique Representation Theorem) 

Ky-potheses: 

1, 3 is a sequence of (p X m) matrices satisfying (4.2) for 

some positive integer r. 

2. S ( = 0, 1 2 . . . ) are generalized Hankel matrices for 

9, as defined in (4*3), with rank Sp) = n. 

3.  (B, C) is an ordered pair of matrices with the following properties: 

(i) B is a pr X n  matrixwhose n columns are a basis for the 

column space of (0). Sr 

(ii) C is a (n X ms) matrix whose n rows are a basis for the 

row space of (0). sr 

(iii) BC = s(O) = S, say. r 

Conclusion: 

Let 

(n X n) matrix; 

(n X m) matrix; 

(p X n) matrix. 

Then 

a. (F, G, H) is a minimal realization of the sequence Y. 

2. Given any minimal realization (F, G, H) for Y there exists 

an ordered pair of matrices (B, C) having the properties of Hypothesis 3 

and generding (F, G, H) when substituted on the right-hand side of 

equations (4.45). 



3. IFhe pair (B, C) of Conclusion 2 is unique for each minimal 

realization (F, G, H), and is given explicitly by 

where V and W are defined by (4.19). 

Proof: - 
-t 

1. Let S = 5'') and S = pseudo inverse of S. r 

Then, as shown in Appendix B, 

and 

t (1) 1- k 1- ( 0 )  
Now &G = (E .S(0)Ct)(B Sr C ) (B Sr E:) 

p r  

= (E S C ~  )(B+sN%+)(B~sE;), by Lemma 4.5 
P 

= E S(k)E& by Lemma 4.2 
p r  

This shows that (F, G, H) is a realization for 3. 

0 1 F is an (n X n) matrix and rank S! = n, by Yypothesis 2. 

Therefore the redization is land%, by L 4.3. 'This completes the 

proof of ConcLusion 1. 



2. Suppose that (F, G, H) is an arbitrary fixed minimal realization 

for Y. Then Lemma 4.6 implies that the matrices (v, W) defined by (4.25) 

have the properties of (B, C )  postulated in Hypothesis 3 of our theorem. 

Therefore, substitution of 

on the right-hand side of (4.45) will give a minimal realization of V. 

Let this minimal realization be (F1, G1, H ~ )  : 

Let V; = [HiFiH; . . . (F;)'-'H;], W1 = [ G~ FIGl . . . G ~ I .  (4.52) 

BY Lemma 4.8, 

where 

BY Lemma 4.6, 

and 



Now from (4.53) and (4.54): 

Using the  f i r s t  of the equations (4.51), we ob ta in  

Again, from (4.53) and (4.54)) 

~ u t  now (using s = s ( 0 ) ) :  r 

t 
V V S  1 = ! V'S) by (4.52) 

~ ~ ~ 1 - l  



Now, from (4.51), (4.58) and (4.59)) 

S, by (4.28) and Lemma 4.7 

Similarly, from (4.53) and (4.54)) 

By proceeding a s  i n  the  proof of (4.59)) one can show 

Therefore 

We have shown t h a t  the  p a i r  (33, C) = (v, W)  generates the minimal 

r e a l i z a t i o n  (F, G, H ) .  

3 .  Suppose t h a t  the re  e x i s t s  some other p a i r  (B1, el) having t h e  

proper t ies  of Hypothesis 3 and giving 



4,8, we must have 

t 
By Appendix Be4(iv), W is the (unique) orthogonal projector for the 

column space of S!'). The columns of B1 are in the column space of 

Sp) . Therefore (4.65) implies 

t 
Similarly, W W is the orthogonal projector for the row space of (0) 

'r 

and (4.66) implies therefore 

The theorem is proved. 

Coro 

Hypothesis : 

Y is a sequence of matrices having a realization of dimension r. 

Conclusion: 

There is a one-to-one correspondence between the minimal realizations 

(F, G, H) for Y and the matrix pairs (v, W) = (B, C) satisfying the 

conditions stated in the hy-potheses of Theorem 4.9. 

The correspondence is established by the following transformations: 



('The one-to-oneness is assured by the uniqueness of the pseudo inverse 

of a matrix. See Appendix B, Section 3.) 

Hypotheses: 

I, 3 is a sequence of p X m matrices and satisfies (4.2) for 

some positive integer r. 

2. S(k) (k = 0, 1, 2, . . . ) are generalized Hankel matrices for 
r 

3, as defined in (4.3) . 

3 = column space of S(O) ; i.e. an n-dimensional subspace r 

of R~~~ 

(0). 6?, = row space of S , i.e. an n-dimensional subspace of R ~ .  

= orthogonal complement, of 3d. 

= orthogonal complement of R. 



Conclusions : 

1. Suppose (P, Q) are a pair of matrices satisf'ying the hypotheses 

of Theorem 4,4, and give a minima1 realization (F, G, H) for 3, through 

substitution in the algorithm (4.13). Then the pair (B, c), 

substituted in the algorithm (4.45) of Theorem 4.9, will produce the 

same realization (F, G, H). 

2. Suppose (B, C) are a pair of matrices satisoing the hypotheses 

of Theorem 4.9, and give a minimal realization (F, G, H) for 3, 

through substitution in the algorithm (4.45). Then the pair (P, Q), 
+ 

substituted in KO's algorithm (4.13)) will produce the sane realization 

0 9  G, HI. 

The submatrices B- and C- may be chosen arbitrarily, subject 

only to the restriction that the rows of B- must be a basis for X I 

and the columns of C- must be a basis for 63'. 

Proof: 

1. By Ho's algorithm, Theorem 4.4, equations (4.13) : 



t 
since 8 = [ ( E ~ , ~ ~  P ) ~ ] ~  = E P, b y ( 4 . 7 1 ) ,  and 

n, Pr  

ct = w;,m, by (4.72). 

Likewise, = En,prPSy (O'E mb merefore ,  by ( 4 . ~ 1 ) ~  

Also, H = EpSr (0)  wiJm Therefore, by (4.72), 

Equations (4.74), (4.75), (4.76) a r e  the  same a s  equations (4.45) of 

Theorem 4.9, thus proving claim I. 

t 
2. By Appendix B, Section 4(vlii), the  n rows of B span X. 

5 
By hypothesis, t h e  ( p r  - n) rows of B- span 3C . 

B~ 
Therefore, P -. [ -1 i s  a nonsingular (p r  X p r )  matrix. 

B 
t 

Similarly-, Q = [ C  C -1  i s  a nonsingular (mr X mr) matrix. 

Furthemore, by hy-pothesis, t h e  rows of B- a r e  orthogonal t o  t h e  

(0 )  columns of Sr , and t h e  columns of C- a r e  orthogonal t o  the  rows of 

S ~ O )  m e r e f o r e  

and S(O)C!- = 0. r (4.77) 

'O)Ct = [ ( B ~ ( B ' B ) - ~ B ' ]  (BC)[C'(CC ')-'I = In. Also, B Sr (4.78) 



Now 

Substituting from (4.77) and (4.78), we see that 

Thus, the pair (P, Q) satisfies the hypotheses of Theorem 4.4. In Ho 's 

algorithm (4.13), P and Q occur always in combination with the factors 

E and E\ By (4.73)) 
n, Pr n, 

On substituting the factors (4.80) into Hots algorithm (4.13), the 

identity of the resulting equations with those of (4.45) is immediately 

evident. 

The proof is complete. 



V. & DETERMPlUmX OF REALIUB&E SCALAR SEQVENCES. 

Using t h e  t o o l s  of t h e  preceding chapters,  c e r t a i n  t h e o r e t i c a l  

p rope r t i e s  of r e a l i z a b l e  sequences and of t h e i r  r e a l i z a t i o n s  can be 

e a s i l y  proved. The work reported i n  t h i s  chapter  was t o  provide a 

t h e o r e t i c a l  b a s i s  f o r  l i nk ing  t h e  p roper t i e s  of r e a l i z a t i o n s  of a  given 

sequence, wi th  t h e  p roper t i e s  of pad6 approximants of the  formal power 

s e r i e s  generated by t h e  same sequence. 

Theorem 5 .4  and i t s  c o r o l l a r i e s  show some i n t e r e s t i n g  p r o p e r t i e s  

of symmetric matr ices.  Theorem 5.8 gives four d i f f e r e n t  mathematical 

equivalents  of t h e  statement t h a t  a  sca la r  sequence has a  minimal 

r e a l i z a t i o n  of a  given dimension. The theorems mentioned above a r e  

gene ra l i za t ions  o r  sharper forms of theorems found i n  the  referenced 

l i t e r a t u r e ,  I n  view of t h e  g r e a t  wealth of l i t e r a t u r e  which i s  concerned 

with t h e  same o r  r e l a t e d  problems, it i s  un l ike ly  t h a t  t h e  r e s u l t s  presented 

i n  t h i s  chapter a r e  genuinely new, although t h e  proofs a r e  our own (except 

where references  a r e  given).  

1. - 
Hy-potheses: 

1. Y = (yo, yL3 ...) i s  a  sequence of r e a l  s c a l a r s  having 

a  r e a l i z a t i o n ;  i , e .  Y s a t i s f i e s  a  l i n e a r  recurs ion  (4.2) f o r  some 

p o s i t i v e  i n t e g e r  r .  

('I i s  t he  smal les t  i n t ege r  2 For each nonnegative in t ege r  k, p  = pr 

('I a r e  l i n e a r l y  dependent such t h a t  e i t h e r  the  f i r s t  p 4- 1 columns of Sr 

o r  p = r. 

Conclusion: 



Proof. Let k be a fixed nonnegative integer. 

Ey (4.2), the (r + 1)th column of S r ) ,  n > r, is a linear 

combination of the first r columns. 

(k) = 0 By hypothesis 2, we have Ar p < r, so 

p = r  A(k) # 0. Therefore, the conclusion is trivial if p = r. r 

The result is also trivial for p = 0, since by definition, 

Now suppose p = r - d, 0 < d < r. By hypothesis 2, 

while at least one of the following determinants is nonzero: 

By L e m  3.1, for 0 < c < d, - - 

Suppose A(k) = 0. Then successive substitution of c = 1, 2, . . ., d 
P 

in equation (5.4) and use of (5.2) gives 

Jk+c) = 0 (c=l, 2, ..., d). 
P 

Therefore all the determinants (5.3) vanish, contrary to the implication 

of hypothesis 2. We conclude that # 0. 
P 



Theorem 5.2. 

Hypotheses: 

1. Y = (Yo, yl, ...) i s  a sequence of r e a l  sca la r s  having 

a rea l i za t ion ;  i .e . ,  Y s a t i s f i e s  a l i n e a r  recursion (4.2) f o r  some 

pos i t ive  in teger  r. 

2.  For each nonnegative in teger  k, p = % i s  the  smallest in teger  

such t h a t  e i t h e r  the  f i r s t  p + 1 columns of Sr) a r e  l i n e a r l y  dependent 

o r  p = r.  

Conclusion: 

(k) - rank Sr - Pr (") , a l l  k Z 0 .  - 

Proof: We w i l l  ca r ry  out the  proof f o r  k = 0.  For other values 

of k, the  subscr ip ts  of t h e  y-element i n  each matrix SF) a r e  increased 

by the  value of k, but the  method of proof remains t h e  same. 

By hypothesis, the  f irst  p = (O) columns of Sr ('I a r e  l i n e a r l y  pr 

independent, and thus span a p-dimensional subspace, say K, of the  

r-dimensional Euclidean vector  space R ~ .  Also by hypothesis, t h e  

( + 1) t h  column of Sr) i s  i n  the  subspace K.  We w i l l  show by 

mathematical induction t h a t  - a l l  the  columns of Sr (O) l i e  i n  the  subspace 

(O) equals t h e  dimension p of K, and K. Then t h e  column rank of Sr 

the  conclusion of t h e  theorem follows. 



Column No. 

r 

Row 
No * 

pi-1 ... j+1 . . a r 

Table 5.1: I n d i c e s  of elements i n  S y )  and i n  t h e  row bordering (0 
r 

: Fix  j, 0 < j; suppose t h e  j t h  column i n  

(O) and t h e  j t h  column (O) i s  i n  K ( i . e .  t h e  f i r s t  p columns of Sr r 

a r e  l i n e a r l y  dependent).  

Conclusion: The ( j  + l ) t h  column i n  S y )  i s  a l s o  i n  K. 

Proof: 

The r e s u l t  i s  t r i v i a l  f o r  0 < j - < p.  

Suppose j > p. By r e a l i z a b i l i t y  of t h e  given sequence 3) t h e  

( r  + l ) t h  row of y-elements bordering (O) i s  a l i n e a r  combination of  r 

t h e  r rows of  S r ) .  I n  o the r  words, t h e r e  e x i s t  r numbers pi (i = 1, . . .) r )  

such t h a t  

where the  prime ( I )  denotes t h e  t ranspose.  
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By t h e  induction hy-pothesis, the  j t h  column i s  i n  K, so t h a t  t h e r e  

e x i s t  (unique) numbers q, (B = 1, 2, . . ., p) such t h a t  

Now 

( 5.7 ), together with (5.6 ), gives the  desired resu l t :  

i. e. the  ( j  + 1 ) t h  column of s?) i s  i n  the  subspace K spanned by 

t h e  f i r s t  p columns. 



Since the  induction hy-pothesis i s  t r u e  f o r  j = p + 1 ( d e f i n i t i o n  

of p), it holds a l s o  f o r  j = p +  2, p +  3, .#. . 
Lemma 5.3. 

Hy-potkieses: 

1. 21 = (yo, ylj . . . ) i s  a  sequence of r e a l  s c a l a r s  having 

a r e a l i z a t i o n ;  i . e .  Y s a t i s f i e s  a  l i n e a r  recurs ion  (4,2) f o r  some 

p o s i t i v e  in t ege r  r. 

(k)  i s  t h e  smallest  i n t e g e r  2. For each nonnegative in t ege r  k, p  = pr 

(') a r e  l i n e a r l y  dependent such t h a t e i t h e r  t h e  f i r s t  p + l columns of Sr 

o r  p - r e  

( k )  - Conclusion: rank Sn - Pr ( I  ) f o r  a l l  n >  - p(k),  k > 0 .  
r - 

Proof: 

For n = p (k) t h e  r e s u l t  follows from Proposi t ion 5 .I. 
r 

For n - > r, we merely replace  r by n i n  t h e  l i n e a r  recurrence 

r e l a t i o n  f o r  Y o  The new c o e f f i c i e n t s  thus  a r i s i n g  i n  t h e  recurrence 

r e l a t i o n  a r e  s e t  equal t o  zero. Then Theorem 5.2 g ives  t h e  des i red  r e s u l t .  

has  dimension a t  < n < r, t h e  column space of Sn For pr 

(k )  l e a s t  equal  t o  pr , by Proposi t ion 5.1.  But i t s  dimension cannot be 

(k)  g r e a t e r  than  the  dimensional i ty of t h e  column space of  Sr , which i s  

by Theorem 5.2. Therefore, we again have t h e  des i r ed  r e s u l t ,  and 
Pr 

t h e  proof i s  complete. 

Remarks: The above lemma genera l izes  a theorem by Ho [ 6, p. 28, 

Theorem 2.121, who proved it f o r  the  spec ia l  case k = 0. Hots theorem 



can be s t rengthened i n  another  d i r ec t ion ,  a s  shown i n  t h e  fo l lowing  theorem 

a,nd i t s  co ro l l a ry .  

Theorem 5.4* 

Hypotheses: 

1. Y = (yo, yl, . ..) i s  a sequence of r e a l  s c a l a r s  having 

a r e a l i z a t i o n ;  i . e .  Y s a t i s f i e s  a l i n e a r  r ecu r s ion  (4.2)  f o r  some 

p o s i t i v e  i n t e g e r  r .  

2. For each nonnegative i n t e g e r  k, (') i s  t h e  smal les t  i n t e g e r  Pr 

('1 columns of sr such t h a t  e i t h e r  t h e  f i r s t  1 c pr a r e  l i n e a r l y  

dependent o r  p y )  = r. 

3. rank Sr 

(0 )  4. The ( p I- 1 ) t h  column of Sn , n > p, i s  t h e  (unique) l i n e a r  

combination 

where o = max 10, i: ai # 01. 

Conclusion: 

(k)  = max ( p  - k, D], a l l  k > O ,  n >  p.  rank Sn - - 



The s ign i f i cance  of Hypothesis 4 i s  t h a t  it uniquely s p e c i f i e s  o. 

To show t h a t  t h e  hypotheses a r e  cons i s t en t ,  f i x  n > p. Independent columns 

( 0 )  i n  S(O) a r e  a l s o  independent i n  S )  By Lemma 5.3, rank Sn = p. 
P 

Therefore t h e  ( p + 1 ) t h  column of  S r )  must be a unique l i n e a r  combination 

of t h e  f i r s t  p columns; t h a t  is, t h e r e  e x i s t  unique numbers q ( i  = 1, 2, ..., p) 

such t h a t  

Some (poss ib ly  a l l )  of t h e  
ai 

may be zero.  Let o = 0 i f  a l l  of  

t h e  ai a r e  zero;  otherwise l e t  u = max ( i :  ai $ 0). Then t h e  sum i n  

(5.11)  can be 3rriti;en a s  i n  ( 5.9 ), without l o s s  of gene ra l i t y .  

Now n i n  t h e  preceding paragraph was an  a r b i t r a r y  i n t e g e r  g r e a t e r  

t han  p. Therefore ( 5.9 ) impl ies  t h e  l i n e a r  r ecu r s ion  r e l a t i o n  

- 
"pt-j 

- aiYpmi+ ji f o r  j - > 0.  
i=l 

Let Kn denote t h e  column space of  S . Then (5.12) impl ies  t h a t  

t h e  columns of  S(li) a l l  l i e  i n  Kn, f o r  every k > 0, n > p. Moreover, 
n - - 

f o r  every n > p, we have from 5.12. 

!The -tileoarern i s  proved. 



(~enerslization of B.L. H o t s  Theorem [6, p. 281) 

Hypotheses: Same as in Theorem 5.4. 

Conclusion: Among all possible Hankel matrices Sp) constructed 

f r ~ m  the sequence Y the Largest nonsingular ones are 

motheses: Same as in Theorem 5.4. 

ConcEusion: The power series 

is a rational function with denominator of degree not more than p. 

Furthermore, if cr = p, then 

Proof: 

(i) Suppose 0 - < o < p. Then, by Corollary 5.5, 

A(*) + 0, A'") = o for B > O. 
P P 

Substitute q = p - 1 in Dienes' version of Lemma 3.2. Then f(z) is 

seen to be a ralion~l function with denominator of degree at most p - 1. 

(ii) Suppose o = p. Then, by Corollary 5 -5, A(") # 0, A(") = 0, 
P P+l 

for k - > 0. Substitute p = p - I., q = p in the Bieberbach version of 

Lemma, 3.2. Then the desired result follows immediately from the lemma. 



where 

and 

Lemma 5.7. [27, pp. 302-305][28, pp. 1010, 10111 

Hy-pothesis: 

F i s  a constant n X n matrix. 

Conclusions: 

n n-1 + d( s )  = det ( s 1  - F) = s + dls . . . + dnj 

2 The coef f ic ien t s  di of the  polynomial d (s )  and the matrix 

coeff ic ients  B of the  matrix polynomial ~ ( s )  a re  given by the  
j 

recursion formulas 

1 4, = - t ~ )  for  k = 1) 2) *..) n; 

Bk = Bk-lF + $1, fo r  k = 1, 2, . . . , n-1; 

For a proof of the  lemma, see Desoer [27], pp. 302-305. 

Comment: 

The matrix r a t i ona l  function @ ( s )  = ( s 1  - F ) - ~  i s  ca l led the 

resolvent of F. [29, p. 521 Q ( s )  i s  a l so  the  Laplace transform of t he  

s t a t e  t r ans i t i on  matrix, Q ( t )  = e q  (It). 

It may happen t ha t  a l l  the  n2 elements of the  matrix polynomial 

~ ( s )  have one or more factors  i n  common with d ( s ) .  Cancellation 0-6 a l l  



such common f a c t ~ r s  leads  t o  a simplif ied expression, namely, 

where the  polynomials m(s) and ~ ( s )  a r e  the  r e s u l t  of these  cancel la t ions .  

Then m(s) i s  t h e  minimal polynomial of t h e  matrix F, i . e .  the  (monic) 

polynomial of l e a s t  degree such t h a t  m ( ~ )  = 0; also,  every eigenvalue 

of F i s  a pole of ( S I  - F)-I, i . e .  a zero of m ( s ) .  

For the  purpose of computing ~ ( s ) ,  (5.17) i s  a more e f f i c i e n t  

procedure than Cramer ' s  rule, the  l a t t e r  requir ing nearly ( n  - 1) times 

a s  many mul t ip l ica t ions  a s  (5.17). [27, pp. 302, 3061 

Theorem 5.8. 

Hy-gothesis: 

21 = (Yo, yi, . . .) i s  a sequence of r e a l  sca la r s .  

Conclusion: 

The following f i v e  statements a r e  equivalent : 

(i) Y has a minimal r e a l i z a t i o n  of dimension p, 

(ii) Y s a t i s f i e s  a l i n e a r  recursion of the  form 

where p i s  the  smallest pos i t ive  in teger  f o r  which (5 -19) i s  t r u e .  



00 

(iii) The function f ( z )  = Z ygzk i s  r a t i o n a l  of the  form 
k=O 

For each N > 0, the re  i s  n = n(~) > N such t h a t  - - 

# o. 
P (5-21)  

(v )  There e x i s t s  a  pos i t ive  in teger  p such t h a t  

(0)  p = min (r: rank Sn = r, a l l  n >  r ] .  - (5.22) 

Proof: 

The proof w i l l  be accomplished i n  two cycles: 

F i r s t  cycle: (ii) ( i )  ( i v )  ; (ii) ; 

Second cycle: ( i )  ( i i )  0 )  

By Lemma 4.2, S (j-1 = $s(O) ( i = o ,  1, 2, ...). 
P P 



The f i r s t  element i n  s ( ~ )  i s  yi. Therefore 
P 

and 

i s  a r e a l i z a t i o n  of Y of dimension p. 

Bgr Lemma 4.3, t h e  dimension of any minimal r e a l i z a t i o n  of ?4 

(0 )  i s  equal t o  t h e  rank of S . 
P 

( 0 )  It remains t o  show t h a t  rank S = p, i . e .  A(01 # 0. Since 
P P 

p i s  t h e  smallest in teger  f o r  which (5.19) i s  t rue ,  then f o r  each in teger  

cr, 1 - < o - < p, the re  i s  an in teger  r(cr) such t h a t  the  o t h  column of 

S (O) i s  l i n e a r l y  independent of the  preceding a - 1 columns. Let 
d o )  

r = m x  { r ( o ) ,  p).  Then p i s  the  smallest in teger  such t h a t  the  f i r s t  
1 a < p  - - 

p + 1 columns of S y )  a r e  l i n e a r l y  dependent or p = r. By Proposition 

5 +1, we have A(0) # 0. This completes the  proof of jii)======+ (i). 
P 

Let (F, G, H) be a minimal r e a l i z a t i o n  of Y The t r a n s f e r  

f'unction of t h e  system (F, G, H) i s  

where I i s  the  p-dimensional un i t  matrix. We can wri te  



and, f o r  suf f ic ien t ly  large  s, express (I - 2 F ) - ~  
s a s  a geometric 

ser ies .  The r e s u l t  i s  

It i s  convenient t o  consider functions t h a t  a r e  regular a t  0 

ra ther  than a t  i n f i n i t y .  We therefore put 

By Lema 5.7, Z i s  a ra t iona l  function of s, of denominator degree 

q - < p and numerator degree p = q - 1. It follows t ha t  f i s  a r a t i ona l  

function of z, with numerator and denominator degrees the  same a s  Z. 

To show t h a t  q = p, we use t he  following two facts :  

(a) (F, G, H) i s  the  minimal rea l iza t ion  of a scalar  sequence; 

therefore F i s  a nonderogatory matrix, i .e .  the  minimal and the  

charac te r i s t i c  polynomials of F coincide. [6, p. 47, Corollary 3.71 

(b) Suppose a11 factors  common t o  t he  numerator and denominator 

of ~ ( s )  have been cancelled. Then the  denominator i s  the  minimal 

polynomial of t he  matrix F. [27, p. 3061 

The cha rac t e r i s t i c  polynomial of F, ~ ( s )  = det [ F  - SI], i s  of 

degree p. By (a ) ,  F i s  nonderogatory; so, the minimal polynomial i s  

of the  same degree p. Therefore, (b)  implies q = p. 

By Lemma 5.7, equation (5.18), the  denominator of f has a nonzero 

constant term. (otherwise s would be a cancellable factor .  ) Thus, 

f i s  a r a t i ona l  fbnction, 



3 .2 ( i ) ,  we f i n d  t h a t  (5.28) implies 

a(") = o f o r  a l l  ir > 0. 
pn-l  - 

Again, by Lemma 3 . 2 ( i i ) ,  p i s  t h e  l e a s t  value of q such t h a t  
cc 

z A ( ~ ) Z "  i s  a polynomial. merefore ,  given any nonnegative in teger  
k=O q+l 

N, the re  i s  n =. n ( ~ )  3 N such t h a t  - 

Condition (5.20) implies tha,t, f o r  a l l  n > p + 1, t h e  f i r s t  - 
a r e  l i n e a r l y  dependent. Condition (5. e l ) ,  

however, implies t h a t  f o r  su f f i c ien t ly  l a r g e  n, the  f i r s t  p columns 

(O) a r e  l i n e a r l y  independent. Therefore, q = p i s  t h e  smallest  of Sn 

in teger  such t h a t  the  f i r s t  q + 1 columns of Sn (O) a r e  l i n e a r l y  

dependent f o r  a l l  n > 0,  This, i n  turn, implies t h a t  q = p i s  the  - 
smallest  in teger  such t h a t  f o r  a l l  n > 0, the  ( q  + l ) t h  column of 

S p )  i s  a l i n e a r  combination of t h e  preceding q columns. The 

statement (ii) i s  an immediate consequence. 

I f  a minimal r ea l i za t ion  f o r  Y e x i s t s  and has dimension p, 

n 
(0 )  then (5*19) i s  t rue .  This implies rank s(O) = rank S = p, a l l  
P 

n > p. Since rank S - ( O )  < p - 1, we have shown t h a t  (ii) 
0-1 --- (v> . 



Conversely, suppose (5.22) is true for some positive integer p. 

We appeal to the following lemma proved in Hots dissertation [6; p. 20, 

Lemma 2.73: 

('1 for some integer  uppo pose that rank Sr) = rank SHl 

(0) r. Applying the algorithm (4.13) to the matrix Sr 

produces (F, G, H) such that the fundamental relation 

(0) H$G = Yk is satisfied for every element of Sr+l, 

that is, for k = 0, 1, 2, 2re" 

(O) = p, all n > p. Therefore applying Now (5 -22) implies rank Sn - 

the algorithm (4.13) to the matrix S(O) produces (I?, G, H) such that 
P 

H$G = yY, k = 0, 1, 2, . . . . Therefore Y has a realization (F, G, H) 

and the realization is minimal of dimension p, by Theorem 4.4. 

The proof of the theorem is complete. 



VI- PARTIAL JXEALIZATION OF SCALAR SEQUE3lCES. 

The l a s t  theorem of Chapter 5 gave four d i s t i n c t  s e t s  of con- 

di t ions ,  each s e t  being necessary and suf f ic ien t  f o r  a given scalar  

sequence t o  be real izable  i n  the  s t r i c t  sense used by B. L. Bo. We 

now turn our a t t en t i on  t o  the following two problem areas:  One is  the 

approximate r ea l i z a t i on  of sequences which do not meet the  r ea l i z ab i l i t y  

c r i t e r i a  of Theorem 5.8. The other problem concerns the  p a r t i a l ,  

approximate r ea l i z a t i on  of sequences which a re  known t o  be real izable  i n  

the  s t r i c t  sense. 

The two problems can be t r ea t ed  a s  one, mathematically. This 

becomes evident from the  following def ini t ions .  

6.1 Definitions. 

Suppose Y = ( y ,  . . . ) i s  a sequence of rea l  numbers. 

The sequence Y i s  ca l l ed  p-realizable i f  it i s  real izable  and 

i f  p i s  the  smallest posi t ive  integer fo r  which the  recursion formula 

i s  t rue .  I f  Y i s  not realizable,  we s e t  p = m. 

Suppose r i s  a posi t ive  integer, and ( F ~ ,  Gr, H ) i s  an ordered r 

t r i p l e  of matrices computed from Hots minimal rea l iza t ion  algorithm using 

associated with Y. Then (F,, Gr, Hr)  i s  the  matrices S!') and Sr 

ca l l ed  a l i nea r  model of order r fo r  Ye 

For the  sake of c la r i ty ,  the phrase real izable  i n  the  s t r i c t  sense 

w i l l  be used i f  a  sequence Y i s  p-realizable, p <a .  



A l i nea r  model of order r i s  ca l l ed  a p a r t i a l  real izat ion (of order r )  

fo r  Y i f  Y i s  p-realizable, p > r, or  i f  Y i s  not real izable  i n  

the  s t r i c t  sense. 

Remarks. 

I f  Y i s  p-realizable, p < a, then any l inear  model of order p 

( o r  greater  than p) i s  a  m i n i m a l  rea l izat ion,  while any l i nea r  model of 

order l e s s  than p i s  a  p a r t i a l  realizatiora. This follows immediately 

from the  def ini t ions  and the  theorems of Chapter 4, especially Theorem 4.9 

and i t s  corollary.  

Suppose (F,, Gr, Hr)  i s  a p a r t i a l  r e a l i z a t i on  fo r  I, and t h a t  

the  elements 5 of the  sequence Z = (x0, x ...) are  given by 
1, 

The sequence 55 i s  uniquely determined by Y r, and by the  choice of 

t 
the  submatrices Eit and C of P and Q, respectively. (see  conclusion 

2 of Proposition 4.11.) The map Y + Z and i t s  approximating proper t ies  thus 

may possibly depend on the  par t i cu la r  choice of the  p a r t i a l  r ea l i za t ion .  The 

r e l a t ed  questions can be usef'ulb studied a s  projection problems. [ 3 7 ]  

1 ,  Y i s  a  p-realizable sequence, p < w .  

2. (F,, Gr, Hr) i s  a l inear  model of order r fo r  Y. 



Conclusion: 

1. Fry  G H )  is a minimal realization for Y if, and only if, 

2 dim Fr = p if r 2 p; dim F 5 r if r < p. r 

Proof: 

Since Y is p-realizable, p <a, a linear recursion of the form 

(6.1) holds for Y, ,th upper limit p. By Proposition 4.1, Y has a 

realization. 

By definition, p is the smallest integer for which the recursion 

(6.1) is true. Therefore, Theorem 5.8 implies that every minimal realization 

r 
( 0 )  for Y has dimension p. By Theorem 4.4, dim F = rank Sr . 

(i) Suppose r 2 p. 

Then, rank S:') = p [ 6; p. 25, Corollary 2.91, and, by Theorem 4.4, 

( F ~ ,  Gr, Hr) is a minimal realization for 44, dim Fr = p. 

(ii) Suppose r < p. 

Clearly, rank S(O) 5 r, since the elements of Y are scalars. 

(07 But dim Fr = rank Sr by Theorem 4.4. Therefore, dim Fr 5 r < p. 

Every minimal realization for Y has dimension p. Therefore (F,, Gr, Hr) 

is not a minimal realization. 

The proof is complete. 

Par-tial realization .for a given scalar sequence 9 are not 

realizations in the strict sense. 



Theorem 6.3. 

Hypotheses: 

1. Y = (yo, yl, . . .), is a sequence of real numbers. 

2. r is a positive integer such that A!') f 0. 

3 .  (F, G, H) is a linear model of order r for Y. 

Conclusion: 

H$G = Ykr  k = 0, 1, *.., 2r - 1. 
Proof: 

-1 has an inverse S . Define the By hypothesis 2, S = Sr 

(r X 1) vector a by 



Define a sequence 5 = (x 9 X 1  9 )  by 

We observe: 

(i) The sequence 5 satisfies a linear recurrence relation and 

therefore has a reabization, by Proposition 4.1. 

(ii) The first 2 terms of the %-sequence are the same as the 

first 2 terms of the Y-sequence. 

are completely determined by (iii) The matrices S F )  and Sr 

the first 2 terns of the Y-sequence. 

(iv) The coefficients a of the vector a are unique because - 
S is nonsingvclar. 

By meorem 4.4, (F, G, H) determined from the first 2r terms of 

the %-sequence is a minim1 realization for the %-sequence. Because 

of hrnothesis 2, dim F =I r. Now 

E ~ G  = %, for all B 2 0 .  (6 .7)  

But, as observed in (ii), % = yk, k = 0 1 , 2 - 1. Therefore 

H$G = ykj for = 0, b9 * 2r - l9 (6.8) 

r 
(1) where (F, G, W) are determined by S ( O )  and Sr . 

The proof of the theorem is complete. 



Corollary 6.4. (~ote: This is a special case of B.L. Ho's Lemma 

2.7 [6, p. 201 and [38, Theorem 21.) 

Hypotheses: 

1. Y = y o  y . ) is a sequence of real numbers. 

2. r is a positive integer such that B (0) (O) = 0. r # O9 

3. (F, G, H) is a linear model of order r for ?4., 

Conclusion: 

Proof: 

By Theorem 6.3, H ~ G  = yk, k = 0, 1, . .., 2r - 1. (6.8) 

('1 are linearly (O) $ 0 implies the first r columns of Sr+l 'r 

independent. Let their span be X. Then = 0 implies that the last r+l 

(O) is in X. Therefore there exist unique coefficients column of Sr+l 

a i = 1 2 r such that 

The first r equations of the set (6.9) are identical with (6.4). The 

coefficients (ai} are uniquely determined by (6.12), as was observed in 

comment (iv) of Theorem 6-3. Therefore the (ai} in (6.4) and (6.9) must 

be the same. 

Proceeding as in Theorem 6.3, we get a realizable sequence 

Y = (xo> xl, ...) and a triple of matrices (F, G, H) such that 



k 
H F G  = % = yk, for k = o ,  1, ..., 2r. (6.13) 

The corollary is proved. 

Theorem 6.5. 

1, CY = (y Y is a sequence of real numbers. 

2. r is a positive integer such that A(') # 0. r 

3. (F, G, H) is a linear model of order r for 3. 

Conclusion: 

The rational function 

is the ( r  r - 1) pad4 approximant for the power series 

Proof: 

The motheses are the same as those of Theorem 6.3. As shown in 

that theorem, (F, G, H) is a minimal realization for the sequence 

D = (x x ...) defined by (6.4) to (6.6). The dimension of the o9 9' 

realization is r, by hypothesis 2. 

The transfer function of the system (F, G, H) is 



Let z = 2 then 
s9 

Now ~ ( z )  i s  a r a t i ona l  f'unction of the  form 

The proof i s  contained i n  the  proof of Theorem 5.8, equation (5.28). 

Because of (6.28), ~ ( z )  s a t i s f i e s  the defining condition I of the  

(r ,  r - 1) pad6 approximant fo r  f :  

where 

deg B I r - 1, 

deg C 5 r; 

B = numerator polynomial of R, 

C = denominator polynomial of R. 

It remains t o  show tha t  

For su f f i c i en t l y  small values of z ,  we have 

where 9 k = 0, 1, 2, ..., a re  the  elements of the  sequence 2 .  

By Theorem 6.3, 



Therefore, 

r Multiply both sides of (6.34) by ~ ( z )  = co + c z + ... + c z . Then 1 r 

(6.31) is obtained, and condition 11 of the ( r  r - 1) pad6 approximant 

for f is satisfied by ~(z). 

The proof of the theorem is complete. 

Hypotheses: 
00 

is a power series whose pad& table is normal. 

2. (F, G, H) is a linear model of order r for the sequence 

Conclusion: 

The transfer function of the system (F, G, H) is the element 

(O) in the E-array for the function 
Er 

Proof: 

Since f has a normal pad; table, Theorem 3.5 implies that 

(O) 0. Therefore, H(I - ZF)-'G is the (r, r - 1) pad& approximant 
AX- 

for f, as shown in Theorem 6.5. 

The transfer function of the system (F, G, H) is 



where 1~ = H$G> k = 0, 1, . . . . (6.38) 

Let (pr, r-XI %,r-1 ) be the ( r  r - 1) a d  pair for f. 

BY meorem 6.5, 

By Proposition 2.10 and the definition of the E-array, 

where [ equations (2.64) 1 

and 

Now (6.39) and (6.40) give 

The proof of the corollary is complete. 



VII- CONCLUSIONS AND FUTURE RESEARCH AREAS. 

Starting with B, L. Ho's algorithm for computing linear models 

from input-output data, we have studied the relation between the realized 

system matrices (F, G, H) and certain rational approximations related 

to the formal power series whose coefficients are the Markov parameters. 

For scalar sequences of Markov parameters, Y = (yo, yl, ) , the system 
matrices (F, G,  H )  computed by B. L. HO'S algorithm are shown to have 

00 k the following property: Suppose pi is a normal sequence (i.e., Z ykz 
0 

has a normal pad& table), then the transfer function H(s1- F)-~G lies 

on the diagonal of the E-array for ?4 . 
Deeper results require research into the properties of E-arrays 

for nonnormal sequences. With this aim, we have developed an explicit 

determinantal expression for pad6 approximants which is valid for both 

the normal and the nonnormal case (Theorem 3.7). The extension of this 

work to the E-array should be straight-forward, even if tedious. 

By concentrating attention on the leading terms of a given sequence 

9 , the pad6 approximation emphasizes the high-frequency response of a 
linear model for Y . This approach, while desirable for many appli- 

cations and interesting from a theoretical standpoint, has certain 

limitations. For instance, in modeling a linear system from noisy 

input-output data, one would want to emphasize a pass-band rather than 

the high end of frequency-response spectrum. This important problem 

is therefore likely to require some modification of the methods of the 

pad6 approach. A possible alternative to be considered is the uniform 

(Chebychev) approximation. 



Besides confining attention to the pad& approach, our research 

on the approximating properties of linear models has been restricted to 

single input-single output systems. The restriction allowed the important 

issues and steps to stand out in the investigation. Extension of the 

results to multivariate systems may be possible, at the cost of increased 

complexity in the derivations. 

As a by-product of our study, we derived reciprocal relations between 

a minimal realization (F, G, H) and the corresponding pair of matrix 

factors (v, w). The result, found in the Unique Representation Theorem 

and its corollary, is a refinement of Hots algorithm. The intrinsic 

elegance of the relations presented in the corollary is accompanied by 

computational advantages compared with the earlier formulation of the 

algorithm by B. L. Ho. Future research may be able to exploit the 

one-to-one correspondence established here for the first time, and 

uncover its deeper theoretical significance. 



1. ~ o r m a l  power s e r i e s  [9, p. a461 

Let X  be a l e t t e r  and l e t  M be the  s e t  of nonnegative in tegers  

(i. e. the  natural  numbers). Let G be the  monoid of functions from the  

s e t  [x) t o  N. 

I f  k E N i  l e t  $ denote the  function i n  G whose value at X  

0 1 2  
i s  k. Then G = ( X  , X , X  , ..., 8, ...), and xk i s  a monomial 

whose index v i s  ca l l ed  i t s  . As a matter of notation, "degree" 

i s  of ten abbreviated "deg". 

Let R  be a commutative ring, and l e t  R [ [ X ] ]  be the  s e t  of 

functions from G i n to  R, without any r e s t r i c t i on .  Then an element 

of R [ [ x ] ]  may be viewed a s  assigning t o  each monomial 8 a coeff ic ient  

% E R. We denote t h i s  element by 

%he summation symbol here i s  not a sum, but the  e q r e s s i o n  is  a l so  

wr i t t en  i n  the form 

and i s  ca l l ed  a i n  one variable, with coeff ic ients  

Addition and mul t ip l icat ion of two elements i n  R[ [x ] ] ,  say 

CO 03 

f = H akXk and g = H bkxk9 
k=O k=O 

a r e  defined a s  follows: 



where c  = B aUbv. ( ~ o t e :  with these def in i t ions  of addit ion and 
u+v=k 

multiplication,  the  s e t  R[[x]]  becomes a  commutative r ing. )  

m 

Let f  = C "kxk be a  nonzero power se r ies .  The smallest index 
k=O 

k fo r  which % # 0 i s  ca l l ed  the  order of f ,  denoted by o ( f )  . The 

zero element of R[[x]] i s  sa id  t o  be of order + m. [ l g ,  pe 1291 

i n  one variable with coeff ic ients  i n  R can be 

i den t i f i ed  with formal power se r ies  a s  follows: 

0  1 
I f  f  E R[X] and f  = aoX + alX + ... + a xm, then we iden t i fy  

m m 

f  with the  power s e r i e s  Z ak& where ak = 0, V k > m. Thus, the  
k=O 

polynomials i n  one variable i n  R[X] a re  i den t i f i ed  with the  subset of 

f inc t ions  G -+ R i n  R[[X] 1 which a r e  zero f o r  almost a l l  elements of 

The of f, denoted by deg f ,  i s  the  l a rges t  index k  f o r  

which ak 0. The zero polynomial i s  sa id  t o  be of degree - a. I f  

deg f  = m, then am # 0 by definit ion,  and am i s  the  

of f .  A monic polynomial has leading coeff ic ient  equal t o  unity. 

If f, g E R[x], then we have: 

deg ( f ,  g )  5 max(deg f ,  deg g ) .  



Also deg(fg) = deg 6 + deg g if W i s  an i n t e g r a l  domin,provided a t  

l e a s t  one of t h e  leading coef f i c ien t s  of  f ,  g i s  not a. divisor  of zero. 

If f ,  g E R[ [XI]? then [Zariski and Smuel, E I  p. 1291 

Also 

3 . gia"ciona1 ~ e " c o n s  [g, p. 116 1 

If K i s  the quotient f i e l d  of an in tegra l  domain R,  t he  quot ient  

f i e l d  of R[X] i s  denoted by K(x). h elelnent of M(X) i s  ca l l ed  a  

r a t iona l  funct ion.  A r a t iona l  function can be wr i t t en  a s  a  quotient  

f  (x)/~(x) where f, g are  polynomials, 

Two nonzero polynomfals f ,  g are  calked r e l a t i v e l y  prime i f  

f  an& g have no comon fac to r s  o ther  than constants .  If f and g 

a r e  r e l a t i v e l y  prime, the  r a t i o n a l  function ~(x)/~(x) i s  sometimes 

c a l l e d  ""irreeiraciblei'. [2, p. 1531, 610, g .  ~ 0 6 1 ,  [17, p .  3981. 



1. Definition [7, p. 1973 

Let A be an a rb i t r a ry  ( f i n i t e )  matrix. A matrix A' i s  ca l led 

the  of' A i f  the  follosiing hoJ_d.: 

For an a l ternat ive ,  equivalent definif ion,  see Moore's theorem 

i n  Section 3. 

2. Construction [3 l ,  p.91 

Let A be a,n a rb i t r a ry  p X m matrix, rank A = n. Suppose B 

and C a r e  matrices with the  following properties: 

(i) B i s  a p X n matrix whose n columns are  a bas i s  f o r  the  

column space of A. 

( i i )  C i s  a n X m matrix whose n rows a re  a bas i s  fo r  the  row 

space of A. 

(iii) A = BC. (B.3) 

Then, by the  "Theorem of Corresponding Minors " [ 31, pp. 14, 15 1, 

(13 9) and (CC ') are  nonsingular n X n matrices. The pseudo inverse 

of A i s  given by 



3 0 [ 34, pp. 600, 6011 

Moore's Theorem [35? pa 14-2031 : -- -- 

Given a finite matrix A, there is a unique matrix At (called 

"general reciprocal" by moore) such that, for suitable matrices L and R, 

This At satisfies 

t t  
and AA , A A are Hermitian matrices. (~ote: A* is the conjugate 

transpose of A,) 

Proof: [34, pa 6001 

(i) Let n = rank A. There are nonsingdar matrices P and Q 

such that 

is the canonical diagonal form of A. [22, vol. I; p. 1411 

t 
Then A~ = Q,?JXP satisfies A A A  = A. (~08) 

t 
Express the co s of A as sums of vectors in the column 

* 
subspace of A* and vectors orthogonal to the columns of A : 

Similarly, write 



Then 

Hence (13.5) holds if we take 

This proves the existence part of Moore's theorem. 

* * 
(ii) If AXA = 0, X = YA - A Z, then 

implies AX = 0. But then we have 

x*x = (A*z)*x = Z*(AX) = o x = 0. 

Hence all solutions At of (l3.5) are the same. This proves the 

uniqueness part of Moore 's theorem. 

t t  
(iii) Since (AAA)AA = A, and, by (~.11), 

3C * *  * *  3C 
where Ll = A X4A AA X4, R1 = X4A AA XqA , 

t t  
it follows that (A AA ) satisfies Moore's conditions (B.5) for the 

t 
pseudo inverse. By uniqueness of A , we have 



-t t *  
Similarly, A A = (A A) . This completes the proof of Moore's 

theorem. 

Penrose's Theorem [33> pp. 17-19] 

Given a finite matrix A, there is a unique matrix At (called 

"generalized inverse " by penrose) such that 

Proof: [34, p.  6011 

t 
Let A be fixed. If A , L, R satisfy (B.5) and (B.6)) then 

(B.IB) holds, so A+ exists. 

Conversely, if (B.12) holds, then 

t t* t-n t 
Hence (93.5) follows, with L =: A A , R = A A . Therefore, by 

Moore's theorem, (B. 12) has exactly one solution At. 

'This completes the proof of Penrose's theorem, and furthermore 

groves the 

Moore ' s  and Penrose 's definitions, of the pseudo inverse At of a 

given finite matrix A, are equivalent. 
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4. [3 l ,  pp. 8, 91[32:, p n  151 

t Let A be an a rb i t r a ry  p X m matrix, rank A = n, and l e t  A 

be the  pseudo inverse of A, a s  defined i n  Section I. Let B and C 

be constructed a s  i n  Section 2. 

( i )  A* e x i s t s  and i s  unique.  enro rose's theorem, see Section 3.) 

-1- (ii) I f  A i s  nonsingular, then A , 

( iii) 

( i v )  AAt = B ( B ' B ) - l B 1  i s  the  unique orthogonal projector fo r  

t 
the  column space of A, i . e .  given any p X 1 vector x, AA x i s  the  

orthogonal projection of x upon the  column space of A. 

-1 Similarly, A ~ A  = C ' (CC ') C i s  the  unique orthogonal projector 

f o r  the  row space of A. 

t 
(v) A A  and A A a r e  symmetric, idempotent matrices. 

( v i )  The row space of At i s  the  column space of A; t he  column 

space of At i s  t he  row space of A. 

t 
(arii) 13 i s  a n X p matrix whose rows span the  column space of 

A;  ct i s  a m X n matrix whose columns span the  row space of A. 
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